Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (1): 23-31.doi: 10.12108/yxyqc.20240103

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Fluid phase and hydrocarbon reservoir types of Permian Upper Urho Formation in Shawan Sag,Junggar Basin

WANG Jinduo1, ZENG Zhiping1, XU Bingbing2,3, LI Chao2, LIU Dezhi1, FAN Jie1, LI Songtao1, ZHANG Zengbao4   

  1. 1. Research Institute of Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257015, Shandong, China;
    2. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Xinjiang Xinchun Petroleum Development Co., Ltd., Sinopec, Dongying 257000, Shandong, China
  • Received:2023-07-03 Revised:2023-07-28 Online:2024-01-01 Published:2024-01-02

Abstract: There are abundant oil and gas resources in the super-deep strata of Shawan Sag in the hinterland of Junggar Basin. Thermal evolution simulation of source rocks was carried out to analyze the types of hydrocarbon generation products of source rocks of Permian Upper Urho Formation in Shawan Sag. Based on the experimental data of the high-temperature and high-pressure physical properties of the formation fluid, the formation fluid phase of well Zheng10 in Shawan Sag was studied by using phase diagram discrimination method and empirical parameter method. The results show that:(1) The oil and gas of Upper Urho Formation of well Zheng 10 in Shawan Sag mainly came from the argillaceous source rocks of Lower Urho Formation, with an organic matter type of Ⅱ1, a vitrinite reflectance(Ro) of 1.05% to 1.46%, and a rock pyrolysis peak temperature(Tmax) of 433℃ to 446℃. It is in the mature to high mature evolution stage and currently in the stage of light oil generation.(2) The fluid composition of the Upper Urho Formation is conforming to the fluid composition of condensate gas reservoir, with a formation temperature of 166.0℃, which is between the critical temperature and the critical condensate temperature. The formation pressure is 155 MPa, much higher than the dew-point pressure, with a large surface and dew-point pressure difference, indicating that the fluid exhibits condensate gas phase characteristics under formation conditions, but there are certain differences between the underground oil and gas phase state and the surface produced fluid phase state. Both the phase diagram discrimination method and the empirical parameter method show that the gas reservoirs of Upper Urho Formation in well Zheng 10 are condensate gas reservoirs with a large oil-ring.(3) The Upper Urho Formation in Shawan Sag has superior hydrocarbon accumulation conditions, adjacent to the source rocks of Lower Urho Formation. Oil and gas are transported vertically near the source, migrating and accumulating towards local uplift areas. The thick Triassic and regional cap rocks of the upper part of Upper Urho Formation play an important sealing role, ultimately forming lithologic-structural condensate gas reservoirs in local uplift areas.

Key words: hydrocarbon phase, ultra-deep layer, condensate gas reservoirs, near-source accumulation, Upper Urho Formation, well Zheng 10, Permian, Shawan Sag, Junggar Basin

CLC Number: 

  • TE122.1
[1] 于士泉, 邹慧杰, 门清萍, 等.松辽盆地徐家围子断陷徐深气田流体相态及物理化学性质[J].地质科学, 2009, 44(2):605-613. YU Shiquan, ZOU Huijie, MEN Qingping, et al. Liquid phase and physico-chemical properties of fluids in the Xushen Gasfield, Xujiaweizi Fault-Depression of the Songliao Basin[J]. Chinese Journal of Geology, 2009, 44(2):605-613.
[2] 王启祥, 梁宝兴, 刘欢, 等.呼探1井清水河组气藏流体相态特征及气藏类型[J].新疆石油地质, 2021, 42(6):709-713. WANG Qixiang, LIANG Baoxing, LIU Huan, et al. Fluid phases and gas reservoirs of Qingshuihe Formation in well Hutan-1[J]. Xinjiang Petroleum Geology, 2021, 42(6):709-713.
[3] 罗晓容, 张立宽, 付晓飞, 等.深层油气成藏动力学研究进展[J].矿物岩石地球化学通报, 2016, 35(5):876-889. LUO Xiaorong, ZHANG Likuan, FU Xiaofei, et al. Advances in dynamics of petroleum migration and accumulation in deep basins[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(5):876-889.
[4] WANG Chen, ZENG Jianhui, ZHANG Gongcheng, et al. Formation processes of gas condensate reservoirs in the Baiyun Depression:Insights from geochemical analyses and basin modeling[J]. Journal of Natural Gas Science and Engineering, 2022, 100:104464.
[5] CHEN Chengsheng, WANG Yunpeng, BEAGLE J R, et al. Reconstruction of the evolution of deep fluids in light oil reservoirs in the Central Tarim Basin by using PVT simulation and basin modeling[J]. Marine and Petroleum Geology, 2019, 107:116-126.
[6] DENG Rui, WANG Yunpeng, CHEN Chengsheng. Fluid phase modeling and evolution of complex reservoirs in the Halahatang Depression of the Tabei Uplift, Tarim Basin[J]. ACS Omega, 2022, 7:14933-14943.
[7] 黄越义, 廖玉宏, 陈承声, 等.塔里木盆地顺南1井和顺南4井油气相态演化的数值模拟与预测[J]. 石油与天然气地质, 2023, 44(1):138-149. HUANG Yueyi, LIAO Yuhong, CHEN Chengsheng, et al. Numerical simulation and prediction of hydrocarbon phase evolution of wells Shunnan 1 and 4, Tarim Basin[J]. Oil & Gas Geology, 2023, 44(1):138-149.
[8] PRIMIO R D, DIECKMAN V, MILLS N. PVT and phase behavior analysis in petroleum exploration[J]. Organic Geochemistry, 1998, 29(1):207-222.
[9] 彭平安, 贾承造.深层烃源岩演化与原生轻质油/凝析油气资源潜力[J].石油学报, 2021, 42(12):1543-1555. PENG Ping'an, JIA Chengzao. Evolution of deep source rock and resource potential of primary light oil and condensate[J]. Acta Petrolei Sinica, 2021, 42(12):1543-1555.
[10] 任战利, 崔军平, 祁凯, 等.深层、超深层温度及热演化历史对油气相态与生烃历史的控制作用[J]. 天然气工业, 2020, 40(2):22-30. REN Zhanli, CUI Junping, QI Kai, et al. Control effects of temperature and thermal evolution history of deep and ultra-deep layers on hydrocarbon phase state and hydrocarbon generation history[J]. Natural Gas Industry, 2020, 40(2):22-30.
[11] 赵腾, 赵锐, 肖重阳, 等.凝析气藏相态特征及开发方式研究进展[J].科技通报, 2023, 39(3):1-7. ZHAO Teng, ZHAO Rui, XIAO Chongyang, et al. Research progress on phase behavior characteristics and development mode of condensate gas reservoir[J]. Bulletin of Science and Technology, 2023, 39(3):1-7.
[12] 杨德彬, 朱光有, 刘家军, 等.全球大型凝析气田的分布特征及其形成主控因素[J].地学前缘, 2010, 17(1):339-349. YANG Debin, ZHU Guangyou, LIU Jiajun, et al. Distribution of global condensate gas field and major factors controlling its formation[J]. Earth Science Frontiers, 2010, 17(1):339-349.
[13] 杨海军, 朱光有.塔里木盆地凝析气田的地质特征及其形成机制[J].岩石学报, 2013, 29(9):3233-3250. YANG Haijun, ZHU Guangyou. The condensate gas field geological characteristics and its formation mechanism in Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(9):3233-3250.
[14] 吴涛, 王彬, 费李莹, 等.准噶尔盆地凝析气藏成因与分布规律[J].石油学报, 2021, 42(12):1640-1653. WU Tao, WANG Bin, FEI Liying, et al. Origin and distribution law of condensate gas reservoirs in Junggar Basin[J]. Acta Petrolei Sinica, 2021, 42(12):1640-1653.
[15] 郭秋麟, 吴晓智, 卫延召, 等.准噶尔盆地腹部侏罗系油气运移路径模拟[J].岩性油气藏, 2021, 33(1):37-45. GUO Qiulin, WU Xiaozhi, WEI Yanzhao, et al. Simulation of oil and gas migration pathways for Jurassic in hinterland of Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(1):37-45.
[16] 关新, 潘树新, 曲永强, 等.准噶尔盆地沙湾凹陷滩坝砂的发现及油气勘探潜力[J].岩性油气藏, 2021, 33(1):90-98. GUAN Xin, PAN Shuxin, QU Yongqiang, et al. Discovery and hydrocarbon exploration potential of beach-bar sand in Shawan Sag, Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(1):90-98.
[17] 江梦雅, 王江涛, 刘龙松, 等. 准噶尔盆地盆1井西凹陷石炭系-二叠系天然气特征及成藏主控因素[J]. 岩性油气藏, 2023, 35(3):138-151. JIANG Mengya, WANG Jiangtao, LIU Longsong, et al. Characteristics and main controlling factors of natural gas of CarboniferousPermian in western well Pen-1 sag, Junggar Basin[J]. Lithologic Reservoirs, 2023, 35(3):138-151.
[18] 张鸾沣, 雷德文, 唐勇, 等.准噶尔盆地玛湖凹陷深层油气流体相态研究[J].地质学报, 2015, 89(5):957-969. ZHANG Luanfeng, LEI Dewen, TANG Yong, et al. Hydrocarbon fluid phase in the deep-buried strata of the Mahu Sag in the Junggar Basin[J]. Acta Geologica Sinica, 2015, 89(5):957-969.
[19] 尹路, 许多年, 乐幸福, 等.准噶尔盆地玛湖凹陷三叠系百口泉组储层特征及油气成藏规律[J].岩性油气藏, 2024, 36(1):59-68. YIN Lu, XU Duonian, YUE Xingfu, et al. Reservoir characteristics and hydrocarbon accumulation rules of Triassic Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Lithologic Reservoirs, 2024, 36(1):59-68.
[20] 王天海, 许多年, 吴涛, 等.准噶尔盆地沙湾凹陷三叠系百口泉组沉积相展布特征及沉积模式[J]. 岩性油气藏, 2024, 36(1):98-110. WANG Tianhai, XU Duonian, WU Tao, et al. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag, Junggar Basin[J]. Lithologic Reservoirs, 2024, 36(1):98-110.
[21] 杜金虎, 支东明, 唐勇, 等.准噶尔盆地上二叠统风险领域分析与沙湾凹陷战略发现[J].中国石油勘探, 2019, 24(1):24-35. DU Jinhu, ZHI Dongming, TANG Yong, et al. Prospects in Upper Permian and strategic discovery in Shawan Sag, Junggar Basin[J]. China Petroleum Exploration, 2019, 24(1):24-35.
[22] 朱如凯, 崔景伟, 毛治国, 等.地层油气藏主要勘探进展及未来重点领域[J].岩性油气藏, 2021, 33(1):12-24. ZHU Rukai, CUI Jingwei, MAO Zhiguo, et al. Main exploration progress and future key fields of stratigraphic reservoirs[J]. Lithologic Reservoirs, 2021, 33(1):12-24.
[23] 唐勇, 王智强, 庞燕青, 等.准噶尔盆地西部坳陷二叠系下乌尔禾组烃源岩生烃潜力评价[J].岩性油气藏, 2023, 35(4):16-28. TANG Yong, WANG Zhiqiang, PANG Yanqing, et al. Hydrocarbon-generating potential of source rocks of Permian lower Urho Formation in western depression, Junggar Basin[J]. Lithologic Reservoirs, 2023, 35(4):16-28.
[24] 饶松, 朱亚珂, 胡迪, 等. 准噶尔盆地热史恢复及其对早-中二叠世时期盆地构造属性的约束[J].地质学报, 2018, 92(6):1176-1195. RAO Song, ZHU Yake, HU Di, et al. The thermal history of Junggar Basin:Constraints on the tectonic attribute of the EarlyMiddle Permian Basin[J]. Acta Geologica Sinica, 2018, 92(6):1176-1195.
[25] ZHU Guangyou, ZHANG Zhiyao, ZHOU Xiaoxiao, et al. The complexity, secondary geochemical process, genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin, China[J]. Earth-Science Reviews, 2019, 198:102930.
[26] QIAO Rongzhen, CHEN Zhonghong. Petroleum phase evolution at high temperature:A combined study of oil cracking experiment and deep oil in Dongying Depression, eastern China[J]. Fuel, 2022, 326:124978.
[27] 胡伟, 吕成远, 伦增珉, 等.致密多孔介质中凝析气定容衰竭实验及其相态特征[J].石油学报, 2019, 40(11):1388-1395. HU Wei, LYU Chengyuan, LUN Zengmin, et al. Constant volume depletion experiment and phase characteristics of condensate gas in dense porous media[J]. Acta Petrolei Sinica, 2019, 40(11):1388-1395.
[28] WANG Zhenliang, XIAO Shengdong, WANG Feilong, et al. Phase behavior identification and formation mechanisms of the BZ19-6 condensate gas reservoir in the deep Bozhong Sag, Bohai Bay Basin, eastern China[J]. Geofluids, 2021, 4:1-19.
[29] 刘长林, 张茂林, 梅海燕, 等.凝析气藏油气体系相态测试与拟合[J].石油地质与工程, 2008, 22(1):65-68. LIU Changlin, ZHANG Maolin, MEI Haiyan, et al. Phase state testing and fitting of oil and gas system in condensate gas pool[J]. Petroleum Geology and Engineering, 2008, 22(1):65-68.
[30] 施和生, 牛成民, 胡安文, 等.渤中西南环中深层油气相态特征及其控制因素[J].石油钻采工艺, 2018, 40(增刊1):9-13. SHI Hesheng, NIU Chengmin, HU Anwen, et al. Phase characteristic of middle and deep hydrocarbon in the southwest zone of Bozhong sag and its controlling factors[J]. Oil Drilling & Production Technology, 2018, 40(Suppl 1):9-13.
[31] PRIMIO R D, HORSFIELD B. From petroleum-type organofacies to hydrocarbon phase prediction[J]. AAPG Bulletin, 2006, 90(7):1031-1058.
[32] 于京都, 郑民, 张蔚.基于组分检测与相态模拟的烃类流体液相赋存深度下限预测方法及应用[J].海相油气地质, 2020, 25(1):35-43. YU Jingdu, ZHENG Min, ZHANG Wei. Prediction method and its application of the limit depth of hydrocarbon as stable liquid phase based on component detection and phase state simulation[J]. Marine Origin Petroleum Geology, 2020, 25(1):35-43.
[33] 李小地. 凝析气藏的成因类型与成藏模式[J]. 地质论评, 1998, 44(2):200-206. LI Xiaodi. Genetical types and formation model of condensate gas pools[J]. Geological Review, 1998, 44(2):200-206.
[34] 孙志道. 油气藏流体类型判别方法[J]. 石油勘探与开发, 1996, 23(1):69-75. SUN Zhidao. Method for determinaing the type of different oil and gas reservoirs fluid[J]. Petroleum Exploration and Development, 1996, 23(1):69-75.
[35] 肖胜东.渤海湾盆地渤中凹陷凝析气藏相态识别及其成因机制[D].西安:西北大学, 2019. XIAO Shengdong. Phase identification and genetic mechanism of condensate gas reservoirs in the Bozhong Depression, Bohai Bay Basin[D]. Xi'an:Northwest University, 2019.
[36] 陈棡, 卞保力, 李啸, 等.准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J].岩性油气藏, 2021, 33(1):46-56. CHEN Gang, BIAN Baoli, LI Xiao, et al. Transport system and its control on reservoir formation of Jurassic-Cretaceous in hinterland of Junggar Basin[J]. Lithologic Reservoirs, 2021, 33(1):46-56.
[1] YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55.
[2] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[3] WANG Yifeng, TIAN Jixian, LI Jian, QIAO Tong, LIU Chenglin, ZHANG Jingkun, SHA Wei, SHEN Xiaoshuang. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 149-159.
[4] QIAO Tong, LIU Chenglin, YANG Haibo, WANG Yifeng, LI Jian, TIAN Jixian, HAN Yang, ZHANG Jingkun. Characteristics and genetic mechanism of condensate oil and gas of the Jurassic Sangonghe Formation in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 169-180.
[5] LI Daoqing, CHEN Yongbo, YANG Dong, LI Xiao, SU Hang, ZHOU Junfeng, QIU Tingcong, SHI Xiaoqian. Intelligent comprehensive prediction technology of coalbed methane “sweet spot”reservoir of Jurassic Xishanyao Formation in Baijiahai uplift,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 23-35.
[6] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[7] YANG Haibo, FENG Dehao, YANG Xiaoyi, GUO Wenjian, HAN Yang, SU Jiajia, YANG Huang, LIU Chenglin. Characteristics of source rocks and thermal evolution simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 156-166.
[8] ZHOU Gang, YANG Dailin, SUN Yiting, YAN Wei, ZHANG Ya, WEN Huaguo, HE Yuan, LIU Sibing. Sedimentary filling process and petroleum geological significance of Cambrian Canglangpu Formation in Sichuan Basin and adjacent areas [J]. Lithologic Reservoirs, 2024, 36(5): 25-34.
[9] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[10] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[11] XU Tianlu, WU Chengmei, ZHANG Jinfeng, CAO Aiqiong, ZHANG Teng. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(4): 35-43.
[12] WANG Hongbo, ZHANG Lei, CAO Qian, ZHANG Jianwu, PAN Xing. Sedimentary model of fluvial fan of Permian He-8 member in Ordos Basin and its exploration significance [J]. Lithologic Reservoirs, 2024, 36(3): 117-126.
[13] BIAN Baoli, LIU Hailei, JIANG Wenlong, WANG Xueyong, DING Xiujian. Discovery and exploration enlightenment of Carboniferous volcanic condensate gas reservoirs in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(3): 96-105.
[14] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[15] DUAN Yifei, ZHAO Weiwei, YANG Tianxiang, LI Fukang, LI Hui, WANG Jianan, LIU Yuchen. Source-reservoir characteristics and accumulation rules of shale gas of Permian Shanxi Formation in Yan'an area, Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 72-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: