Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (6): 23-35.doi: 10.12108/yxyqc.20240603

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Intelligent comprehensive prediction technology of coalbed methane “sweet spot”reservoir of Jurassic Xishanyao Formation in Baijiahai uplift,Junggar Basin

LI Daoqing1, CHEN Yongbo2, YANG Dong3, LI Xiao1, SU Hang1, ZHOU Junfeng2, QIU Tingcong2, SHI Xiaoqian2   

  1. 1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay, Xinjiang 834000, China;
    2. PetroChina Research Institute of Exploration and Development-Northwest, Lanzhou 730020, China;
    3. Downhole Services company BHDC, Renqiu 062552, Hebei, China
  • Received:2023-10-31 Revised:2024-02-03 Online:2024-11-01 Published:2024-11-04

Abstract: In order to solve the problems of small coal thickness,small vertical fault distance of gas source fault,low signal-to-noise ratio of seismic data and difficult to predict the sweet spot reservoir of coal,rock and gas in Baijiahai uplift,Junggar basin. A“five-step method”is proposed,which is controlled stepwise. The re sults show that:(1)“Five-step”comprehensive technology provides a powerful technical means for coalbed methane“sweet spot”reservoir prediction,The specific method is to improve the signal-to-noise ratio and resolu tion of CRP gathers using construction edge preserving denoising and harmonic high-frequency recovery processing techniques;The combination of tuning thickness method and frequency division intelligent inversion method, the thickness distribution range of coalbed section and plane is quantitatively predicted;The deep learning intel ligent fracture detection technology was used to predict the fracture profile and plane distribution characteristics of gas source;Analysis of AVO characteristics with different gas saturation based on fluid replacement of coal and rock,the gas saturation is used to predict the gas distribution range in the study area;The“sweet spot”reser voir is located in the superposition of broken nose(or fault block),large coal rock thickness,gas source fracture and high gas saturation.(2)The“sweet spot”is mainly distributed in the fault nose or block trap on the north and south sides of the strike-slip fault in the northern part of the work area,A total of 31 coalbed methane“sweet spot”regions have developed,with a cumulative area of 231.9 km2,The exploration potential of the five“sweet spot”reservoirs on the north side of the strike-slip fault is greater.(3)The coincidence rate between the test index of the vertical well deployed by the research results and the real drilling results is 92%. At the same time, the trajectory of the horizontal well can be optimized and dynamically monitored to improve the productivity of a single well.

Key words: coalbed methane, prestack CRP gathers processing, intelligent inversion of frequency division, intelligent fracture detection, deep learning, “sweet spot”prediction, Xishanyao Formation, Jurassic, Baijiahai uplift, Junggar Basin

CLC Number: 

  • TE122
[1] 李国欣,朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探,2020,25(2):1-13. LI Guoxin,ZHU Rukai. Progress,challenges and key issues in the unconventional oil and gas development of CNPC[J]. China Petroleum Exploration,2020,25(2):1-13.
[2] 张懿,朱光辉,郑求根,等. 中国煤层气资源分布特征及勘探研究建议[J]. 非常规油气,2022,9(4):1-8. ZHANG Yi,ZHU Guanghui,ZHENG Qiugen,et al. Distribu tion characteristics of coalbed methane resources in China and recommendations for exploration research[J]. Unconventional Oil & Gas,2022,9(4):1-8.
[3] 何海清,支东明,雷德文,等. 准噶尔盆地南缘高泉背斜战略突破与下组合勘探领域评价[J]. 中国石油勘探,2019,24(2):137-146. HE Haiqing,ZHI Dongming,LEI Dewen,et al. Strategic break through in Gaoquan anticline and exploration assessment on lower assemblage in the southern margin of Junggar Basin[J]. China Petroleum Exploration,2019,24(2):137-146.
[4] 支东明,薛冽,王屿涛,等. 准噶尔盆地煤岩气资源及勘探潜力[M]. 北京:石油工业出版社,2009. ZHI Dongming,XUE Lie,WANG Yutao,et al. Coalbed meth ane resources and exploration potential in Junggar Basin[M]. Beijing:Petroleum Industry Press,2009.
[5] 杜世涛,安庆,常智泰,等. 新疆煤层气勘探开发迈向新阶段[J]. 非常规油气,2023,10(6):1-7. DU Shitao,AN Qing,CHANG Zhitai,et al. The exploration and development of coalbed methane in Xinjiang are entering a new stage[J]. Unconventional Oil & Gas,2023,10(6):1-7.
[6] 郭绪杰,支东明,毛新军,等. 准噶尔盆地煤岩气的勘探发现及意义[J]. 中国石油勘探,2021,26(6):38-49. GUO Xujie,ZHI Dongming,MAO Xinjun,et al. Discovery and significance of coal measure gas in Junggar Basin[J]. China Petroleum Exploration,2021,26(6):38-49.
[7] 朱志良,高小明. 陇东煤田侏罗系煤岩气成藏主控因素与模式[J]. 岩性油气藏,2022,34(1):86-94. ZHU Zhiliang,GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumulation in Longdong coal field[J]. Lithologic Reservoirs,2022,34(1):86-94.
[8] 侯海海,李强强,梁国栋,等. 准噶尔盆地南缘西山窑组与八道湾组煤层气成藏富集条件对比研究[J]. 非常规油气, 2022,9(1):18-24. HOU Haihai,LI Qiangqiang,LIANG Guodong,et al. Compara tive study of CBM accumulation conditions between the Xishan yao Formation and the Badaowan Formation in the southern Junggar Bain[J]. Unconventional Oil & Gas,2022,9(1):18-24.
[9] 王圣柱,王千军,张关龙,等. 准噶尔盆地石炭系烃源岩发育模式及地球化学特征[J]. 油气地质与采收率,2020,27(4): 13-25. WANG Shengzhu,WANG Qianjun,ZHANG Guanlong,et al. Development mode and geochemical characteristics of Carbon iferous source rocks in Junggar Basin[J]. Petroleum Geology and Recovery Efficiency,2020,27(4):13-25.
[10] 尹海洋,陈同俊,宋雄,等. 基于地震属性优化和机器学习的煤层厚度预测方法[J]. 煤田地质与勘探,2023,51(5):164-170. YIN Haiyang,CHEN Tongjun,SONG Xiong,et al. Methods for predicting the thickness of coal seams based on seismic at tribute optimization and machine learning[J]. Coal Geology & Exploration,2023,51(5):164-170.
[11] 张晨林. 约束稀疏脉冲反演在煤层厚度预测中的应用[J]. 中国煤炭地质,2022,34(9):68-81. ZHANG Chenlin. Application of constrained sparse pulse inver sion in coal thickness prediction[J]. Coal Geology of China, 2022,34(9):68-81.
[12] 单蕊. 地震多属性分析技术在煤层厚度预测中的应用分析[J]. 物探化探计算技术,2021,43(3):304-310. SHAN Rui. Application of seismic multi-attribute analysis tech nique in coal seam thickness predication[J]. Computing Tech niques for Geophysical and Geochemical Exploration,2021,43(3):304-310.
[13] 成润根. 基于高分辨率地质统计学反演技术预测煤层厚度应用研究[J]. 中国煤炭地质,2020,32(增刊1):131-134. CHENG Rungen. Applied research on coal thickness prediction based on high resolution geostatistical inversion[J]. Coal Geology of China,2020,32(Suppl 1):131-134.
[14] 邱杰,符文,孟祥迪,等. AVO技术在煤层气勘探中的应用[J]. 中国煤炭地质,2013,25(33):55-62. QIU Jie,FU Wen,MENG Xiangdi,et al. Application of AVO technique in CBM prospecting[J]. Coal Geology of China, 2013,25(33):55-62.
[15] 陈跃,王丽雅,李国富,等. 基于随机森林算法的低煤阶煤层气开发选区预测[J]. 油气藏评价与开发,2022,12(4):596-603. CHEN Yue,WANG Liya,LI Guofu,et al. Prediction of favorable areas for low-rank coalbed methane based on Random Forest algorithm[J]. Petroleum Reservoir Evaluation and Develop ment,2022,12(4):596-603.
[16] 陈永波,张虎权,张寒,等. 基于OVT域偏移数据的云质岩储层预测技术及应用:以玛湖凹陷乌夏地区风三段为例[J]. 岩性油气藏,2021,33(6):145-155. CHEN Yongbo,ZHANG Huquan,ZHANG Han,et al. Dolo mitic reservoir prediction technology based on OVT domain migration data and its application:A case study of Feng 3 mem ber in Wuxia area,Mahu Sag[J]. Lithologic Reservoirs,2021, 33(6):145-155.
[17] 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1-11. WU Yuyuan,CHEN Zhenlong. Challenges and countermea sures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):1-11.
[18] 靳军,付欢,于景维,等. 准噶尔盆地白家海凸起下侏罗统三工河组沉积演化及油气勘探意义[J]. 中国石油勘探,2018, 23(1):81-90. JIN Jun,FU Huan,YU Jingwei,et al. Sedimentary evolution of the Lower Jurassic Sangonghe Formation in Baijiahai uplift, Junggar Basin and its significance in oil and gas exploration [J]. China Petroleum Exploration,2018,23(1):81-90.
[19] 程亮,王振奇,陈勇,等. 准噶尔盆地白家海凸起侏罗系油气成藏模式与勘探方向[J]. 科学技术与工程,2015,15(25): 115-134. CHENG Liang,WANG Zhenqi,CHEN Yong,et al. Reservoir forming model and exploration direction of Jurassic petroleum, Baijiahai Swell,Junggar Basin[J]. Science Technology and En gineering,2015,15(25):115-134.
[20] 汤磊鑫,周虎,殷磊磊. 淮北地区含煤岩系有机地球化学特征及生烃潜力分析[J]. 非常规油气,2022,9(6):51-60. TANG Leixin,ZHOU Hu,YIN Leilei. Analysis on organic geo chemistry characteristics and hydrocarbon-generating potential of coal-bearing strata in Huaibei Area[J]. Unconventional Oil & Gas,2022,9(6):51-60.
[21] 胡海燕,吴坚,黄芸,等. 白家海凸起油气成藏机理及其主控因素[J]. 新疆石油地质,2013,34(2):137-139. HU Haiyan,WU Jian,HUANG Yun,et al. Petroleum accumula tion mechanism and controlling factors in Baijiahai Swell, Junggar Basin[J]. Xinjiang Petroleum Geology,2013,34(2): 137-139.
[22] 韩永胜,王峰,宋煜,等. 筠连煤层气储层特征与含气量主控因素分析[J]. 非常规油气,2021,8(6):7-13. HAN Yongsheng,WANG Feng,SONG Yu,et al. Analysis of Junlian coalbed methane reservoir characteristics and main con trolling factors of gas content[J]. Unconventional Oil & Gas, 2021,8(6):7-13.
[23] 马昭军,胡治权,张剑飞. 基于谐波分解恢复弱信号的高分辨率处理技术[J]. 新疆石油地质,2024,45(2):235-243. MA Zhaojun,HU Zhiquan,ZHANG Jianfei. High-resolution processing technology for restoring weak signals based on har monic decomposition[J]. Xinjiang Petroleum Geology,2024, 45(2):235-243.
[24] 苏勤,曾华会,徐兴荣,等. 沙漠区地震数据高分辨率处理关键方法及其在尼日尔Agedem地区的应用[J]. 岩性油气藏, 2023,35(6):18-28. SU Qin,ZENG Huahui,XU Xingrong,et al. Key techniques of high-resolution processing of desert seismic data and its appli cation in Agedem area,Niger[J]. Lithologic Reservoirs,2023, 35(6):18-28.
[25] 侯艳,柯沛,宁宏晓,等. 沁水盆地煤层气地震资料处理技术[J]. 非常规油气,2024,11(2):9-20. HOU Yan,KE Pei,NING Hongxiao,et al. CBM seismic data processing technology in Qinshui Basin[J]. Unconventional Oil & Gas,2024,11(2):9-20.
[26] 刘化清,刘宗堡,吴孔友,等. 岩性地层油气藏区带及圈闭评价技术研究新进展[J]. 岩性油气藏,2021,33(1):25-36. LIU Huaqing,LIU Zongbao,WU Kongyou,et al. New progress in study of play and trap evaluation technology for lithostrati graphic reservoirs [J]. Lithologic Reservoirs,2021,33(1):25-36.
[27] 张军华,常健强,王作乾,等. 90°相移薄互层解释技术理论诠释与实际应用[J]. 吉林大学学报(地球科学版),2022,52(4):1348-1359. ZHANG Junhua,CHANG Jianqiang,WANG Zuoqian,et al. Theoretical annotation and application of 90° phase-shifting thin interbed interpretation technique[J]. Journal of Jilin Uni versity(Earth Science Edition),2022,52(4):1348-1359.
[28] 赵长永,陈希光,李俊飞,等. 基于三维地震数据的短期旋回内薄层砂体的预测[J]. 特种油气藏,2023,30(6):40-47. ZHAO Changyong,CHEN Xiguang,LI Junfei,et al. Applica tion in the prediction of thin sand body within short-term se quence cycle based on 3D seismic data[J]. Special Oil & Gas Reservoirs,2023,30(6):40-47.
[29] 刘化清,苏明军,倪长宽,等. 薄砂体预测的地震沉积学研究方法[J]. 岩性油气藏,2018,30(2):1-11. LIU Huaqing,SUN Mingjun,NI Changkuan,et al. Thin bed prediction from interbeded background:Revised seismic sedi mentological method[J]. Lithologic Reservoirs,2018,30(2): 1-11.
[30] 于建国,韩文功,刘力辉. 分频反演方法及应用[J]. 石油地球物理勘探,2006,41(2):193-197. YU Jianguo,HAN Wengong,LIU Lihui. Frequency-divided in version and application[J]. Oil Geophysical Prospecting,2006, 41(2):193-197.
[31] 张卫卫,刘军,刘力辉,等. 珠江口盆地番禺4 洼古近系文昌组岩性预测技术及应用[J]. 岩性油气藏,2022,34(6):118-125. ZHANG Weiwei,LIU Jun,LIU Lihui,et al. Lithology predic tion technology and its application of Paleogene Wenchang For mation in Panyu 4 depression,Pearl River Mouth Basin[J]. Lithologic Reservoirs,2022,34(6):118-125.
[32] LI Wei,YUE Dali,WU Shenghe,et al. Characterizing meander belts and point bars in fluvial reservoirs by combining spectral decomposition and genetic inversion[J]. Marine and Petroleum Geology,2019,105:168-184.
[33] 淮银超,张铭,谭玉涵,等. 澳大利亚东部S区块煤层气储层特征及有利区预测[J]. 岩性油气藏,2019,31(1):49-56. HUAI Yinchao,ZHANG Ming,TAN Yuhan,et al. Reservoir characteristics and favorable areas prediction of coal bed meth ane in S block,eastern Australia[J]. Lithologic Reservoirs, 2019,31(1):49-56.
[34] 李洪辉,岳大力,李伟,等. 基于分频智能反演的曲流河点坝与废弃河道识别[J]. 石油地球物理勘探,2023,58(2):358-368. LI Honghui,YUE Dali,LI Wei,et al. Identification of point bar and abandoned channel of meandering river by spectral decom position inversion based on machine learning[J]. Oil Geophysi cal Prospecting,2023,58(2):358-368.
[35] VAPNIK V,LEVIN E,CUN Y. Measuring the VC-dimension of a learning machine[J]. Neural Computation,1994,6(5): 851-876.
[36] 苏建龙,米鸿,王彦春,等. 基于支持向量机的非线性弹性阻抗反演方法[J]. 石油地球物理勘探,2014,49(4):751-758. SU Jianlong,MI Hong,WANG Yanchun,et al. Nonlinear elas tic impedance inversion method supported by vector machines [J]. Oil Geophysical Prospecting,2014,49(4):751-758.
[37] 张彦周,刘叶玲,谢宝英. 支持向量机在储层厚度预测中的应用[J]. 勘探地球物理进展,2005,28(6):422-424. ZHANG Yanzhou,LIU Yeling,XIE Baoying. Application of SVM in prediction of reservoir thickness[J]. Progress in Explo ration Geophysics,2005,28(6):422-424.
[38] 陈棡,卞保力,李啸,等. 准噶尔盆地腹部中浅层油气输导体系及其控藏作用[J]. 岩性油气藏,2021,33(1):46-56. CHEN Gang,BIAN Baoli,LI Xiao,et al. Transport system and its control on reservoir formation of Jurassic-Cretaceous reser voirs in hinterland of Junggar Basin[J]. Lithologic Reservoirs, 2021,33(1):46-56.
[39] 丁燕,杜启振,YASIN Q,等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用[J]. 石油物探,2020,59(2): 267-275. DING Yan,DU Qizhen,YASIN Q,et al. Fracture prediction based on deep learning application to a buried hill carbonate reservoir in the S area[J]. Geophysical Prospecting for Petro leum,2020,59(2):267-275.
[40] 赵邦六,雍学善,高建虎,等. 中国石油智能地震处理解释技术进展与发展方向思考[J]. 中国石油勘探,2021,26(5):12-23. ZHAO Bangliu,YONG Xueshan,GAO Jianhu,et al. Progress and development direction of PetroChina intelligent seismic processing and interpretation technology[J]. China Petroleum Exploration,2021,26(5):12-23.
[41] 刘红星,陈海清,陈斌,等. AVO技术在鄂东缘煤系致密气预测中的适用性分析[J]. 石油地球物理勘探,2023,57(增刊2):92-99. LIU Hongxing,CHEN Haiqing,CHEN Bin,et al. Analysis of application of AVO technique in prediction of Coal-measure tight gas in easter margin of Erdos Basin[J]. Oil Geophysical Prospecting,2023,57(Suppl 2):92-99.
[42] 张鹏豹,李凡异,杨童,等. AVO技术在二连盆地吉尔嘎朗图凹陷低煤阶煤层气预测中的应用[J]. 大庆石油地质与开发, 2021,40(1):129-136. ZHANG Pengbao,LI Fanyi,YANG Tong,et al. Application of AVO technique in the prediction of low-rank CBM in Jier galangtu sag of Erlian Basin[J]. Petroleum Geology & Oilfield Development in Daqing,2021,40(1):129-136.
[1] YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55.
[2] ZHANG Tianze, WANG Hongjun, ZHANG Liangjie, ZHANG Wenqi, XIE Mingxian, LEI Ming, GUO Qiang, ZHANG Xuerui. Application of ray-path elastic impedance inversion in carbonate gas reservoir prediction of the right bank of Amu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 56-65.
[3] GOU Honguang, LIN Tong, FANG Qiang, ZHANG Hua, LI Shan, CHENG Yi, You Fan. Stratigraphic division of astronomical cycle in early-middle Jurassic Shuixigou Group in the Shengbei subsag of Tuha Basin [J]. Lithologic Reservoirs, 2024, 36(6): 89-97.
[4] ZHANG Peijun, XIE Mingxian, LUO Min, ZHANG Liangjie, CHEN Renjin, ZHANG Wenqi, YUE Xingfu, LEI Ming. Analysis of deformation mechanism of ultra thick gypsum salt rock and its significance for oil and gas reservoir formation:A case study of the Jurassic gypsum salt layers in theAgayry region,eastern right bank of theAmu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 36-44.
[5] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[6] QIAO Tong, LIU Chenglin, YANG Haibo, WANG Yifeng, LI Jian, TIAN Jixian, HAN Yang, ZHANG Jingkun. Characteristics and genetic mechanism of condensate oil and gas of the Jurassic Sangonghe Formation in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 169-180.
[7] YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109.
[8] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[9] YANG Haibo, FENG Dehao, YANG Xiaoyi, GUO Wenjian, HAN Yang, SU Jiajia, YANG Huang, LIU Chenglin. Characteristics of source rocks and thermal evolution simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 156-166.
[10] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[11] KONG Lingfeng, XU Jiafang, LIU Ding. Pore structure characteristics and dehydration evolution of lignite reservoirs of Jurassic Xishanyao Formation in Santanghu Basin [J]. Lithologic Reservoirs, 2024, 36(5): 15-24.
[12] ZHANG Xiaoli, WANG Xiaojuan, ZHANG Hang, CHEN Qin, GUAN Xu, ZHAO Zhengwang, WANG Changyong, TAN Yaojie. Reservoir characteristics and main controlling factors of Jurassic Shaximiao Formation in Wubaochang area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 87-98.
[13] HE Wenyuan, CHEN Keyang. Prediction method for lithologic reservoirs in Doshan slope zone of South Turgai Basin,Kazakhstan [J]. Lithologic Reservoirs, 2024, 36(4): 1-11.
[14] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[15] ZOU Liansong, XUWenli, LIANG Xiwen, LIU Haotian, ZHOU Kun, HOU Fei, ZHOU Lin, WEN Huaguo. Sedimentary characteristics and sources of shale of Dongyuemiao member of Lower Jurassic Ziliujing Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 122-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[3] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[4] ZHANG Jie, ZHAO Yuhua. Seismic sequence of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 71 -74 .
[5] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[6] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[7] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[8] KUANG Hongwei, GAO Zhenzhong, WANG Zhengyun, WANG Xiaoguang. A type of specific subtle reservoir : Analysis on the origin of diagenetic trapped reservoirs and its significance for exploration in Xia 9 wellblock of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 8 -14 .
[9] LI Guojun, ZHENG Rongcai, TANG Yulin, WANG Yang, TANG Kai. Sequence-based lithofacies and paleogeography of Lower Triassic Feixianguan Formation in northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2007, 19(4): 64 -70 .
[10] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
TRENDMD: