Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (5): 15-24.doi: 10.12108/yxyqc.20240502
• NEW ENERGY AND ASSOCIATED RESOURCES • Previous Articles Next Articles
KONG Lingfeng1,2, XU Jiafang1, LIU Ding3
CLC Number:
[1] 王佟, 邵龙义, 夏玉成, 等. 中国煤炭地质研究取得的重大进展与今后的主要研究方向[J]. 中国地质, 2017, 44(2):242-262. WANG Tong, SHAO Longyi, XIAYucheng, et al. Major achievements and future research directions of the coal geology in China[J]. Geology in China, 2017, 44(2):242-262. [2] SHAFIROVICH E, VARMA A. Underground coal gasification:A brief review of current status[J]. Industrial & Engineering Chemistry Research, 2009, 48(17):7865-7875. [3] BHUTTO AW, BAZMI AA, ZAHEDI G. Underground coal gasification:From fundamentals to applications[J]. Progress in Energy and Combustion Science, 2013, 39(1):189-214. [4] PERKINS G. Underground coal gasification-Part I:Field demonstrations and process performance[J]. Progress in Energy and Combustion Science, 2018, 67:158-187. [5] DAGGUPATI S, MANDAPATI R N, MAHAJANI S M, et al. Laboratory studies on combustion cavity growth in lignite coal blocks in the context of underground coal gasification[J]. Energy, 2010, 35(6):2374-2386. [6] SAMDANI G, AGHALAYAM P, GANESH A, et al. A process model for underground coal gasification-Part I:Cavity growth[J]. Fuel, 2016, 181:690-703. [7] HARLOFF G J. Underground coal gasification cavity growth model[J]. Journal of Energy, 1983, 7(5):410-415. [8] PARK K Y, EDGAR T F. Modeling of early cavity growth for underground coal gasification[J]. Industrial & Engineering Chemistry Research, 1987, 26(2):237-246. [9] DINSMOOR B, GALLAND J M, EDGAR T F. The modeling of cavity formation during underground coal gasification[J]. Journal of Petroleum Technology, 1978, 30(5):695-704. [10] XIN Fudong, XU Hao, TANG Dazhen, et al. Problems in pore property testing of lignite:Analysis and correction[J]. International Journal of Coal Geology, 2021, 245:103829. [11] EVANS D G. Effects of colloidal structure on physical measurements on coals[J]. Fuel, 1973, 52(2):155-156. [12] EVANS D G. The brown-coal/water system:Part 4. Shrinkage on drying[J]. Fuel, 1973, 52(3):186-190. [13] LIU Shuqin, ZHANG Shangjun, CHEN Feng, et al. Variation of coal permeability under dehydrating and heating:A case study of Ulanqab lignite for underground coal gasification[J]. Energy & Fuels, 2014, 28(11):6869-6876. [14] XIN Fudong, XU Hao, TANG Dazhen, et al. Experimental study on the change of reservoir characteristics of different lithotypes of lignite after dehydration and improvement of seepage capacity[J]. Fuel, 2020, 277:118196. [15] LIU Xiaohong, YU Haiyang, WEI Lubin. Experimental study on the dehydration characteristics and evolution of the physicochemical structure of XilinGol lignite during the dehydration process[J]. Fuel, 2021, 291:120241. [16] 姚海鹏, 于东方, 李玲, 等. 内蒙古地区典型煤储层吸附特征[J]. 岩性油气藏, 2021, 33(2):1-8. YAO Haipeng, YU Dongfang, LI Ling, et al. Adsorption characteristics of typical coal reservoirs in Inner Mongolia[J]. Lithologic Reservoirs, 2021, 33(2):1-8. [17] 陈亚军, 荆文波, 宋小勇, 等. 三塘湖盆地马朗凹陷上石炭统沉积岩层地球化学特征及古环境意义[J]. 岩性油气藏, 2021, 33(4):63-75.CHEN Yajun, JING Wenbo, SONG Xiaoyong, et al. Geochemical characteristics and paleoenvironmental significance of Upper Carboniferous sedimentary strata in Malang Sag, Santanghu Basin[J]. Lithologic Reservoirs, 2021, 33(4):63-75. [18] 琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理[J]. 地质学报, 2005, 79(2):269-285. JU Yiwen, JIANG Bo, HOU Quanlin, et al. Structural evolution of nano-scale pores of tectonic coals in south ern north China and its mechanism[J]. Acta Geologica Sinica, 2005, 79(2):269-285. [19] 余海波. 东濮凹陷构造特征及古生界有利勘探区带评价[J]. 岩性油气藏, 2022, 34(6):72-79. YU Haibo. Tectonic characteristics and favorable exploration zones of Paleozoic in Dongpu Sag[J]. Lithologic Reservoirs, 2022, 34(6):72-79. [20] XU Hao, TANG Dazhen, CHEN Yanpeng, et al. Effective porosity in lignite using kerosene with low-field nuclear magnetic resonance[J]. Fuel, 2018, 213:158-163. [21] ZHANG Pengfei, LU Shuangfang, LI Junqian, et al. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance(NMR)[J]. Marine and Petroleum Geology, 2018, 89:775-785. [22] 全国无损检测标准化技术委员会. 无损检测X射线数字成像检测方法:GB/T 35388-2017[S]. 北京:中国标准出版社, 2017. National Technical Committee 56 on Non-destructive Testing of Standardization Administration of China. Non-destructive testing-X-ray digital radiography-Practice:GB/T 35388-2017[S]. Beijing:Standards Press of China, 2017. [23] 王崇孝, 田多文, 魏军, 等. 酒泉盆地窟窿山油藏裂缝分布特征[J]. 岩性油气藏, 2008, 20(4):20-25. WANG Chongxiao, TIAN Duowen, WEI Jun, et al. Fractures distribution characteristics of Kulongshan reservoir in Jiuquan Basin[J]. Lithologic Reservoirs, 2008, 20(4):20-25. [24] 全国石油天然气标准化技术委员会. 页岩氦气法孔隙度和脉冲衰减法渗透率的测定:GB/T 34533-2017[S]. 北京:中国标准出版社, 2017. National Petroleum and Natural Gas Standardization Technical Committee. Measurement of helium porosity and pulse decay permeability of shale:GB/T 34533-2017[S]. Beijing:Standards Press of China, 2017. [25] 全国颗粒表征与分检及筛网标准化技术委员会. 气体吸附BET法测定固态物质比表面积:GB/T 19587-2017[S]. 北京:中国标准出版社, 2017. Particle Characterization including Sieving other Sizing Methods and Sieves. Determination of the specific surface area of solids by gas adsorption using the BET method:GB/T 19587-2017[S]. Beijing:Standards Press of China, 2017. [26] 陈振标, 张超谟, 张占松, 等. 利用NMR T2谱分布研究储层岩石孔隙分形结构[J]. 岩性油气藏, 2008, 20(1):105-110. CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, et al. Using NMR T2spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1):105-110. [27] ZHENG Sijian, YAO Yanbin, LIU Dameng, et al. Nuclear magnetic resonance surface relaxivity of coals[J]. International Journal of Coal Geology, 2019, 205:1-13. [28] 朱志良, 高小明. 陇东煤田侏罗系煤层气成藏主控因素与模式[J]. 岩性油气藏, 2022, 34(1):86-94. ZHU Zhiliang, GAO Xiaoming. Main controlling factors and models of Jurassic coalbed methane accumula tion in Longdong coalfield[J]. Lithologic Reservoirs, 2022, 34(1):86-94. [29] THOMAS L. Coal geology[M]. Chichester:John Wiley and Sons, 2020:538. [30] GREGG D W, EDGAR T F. Underground coal gasification[J]. AIChE Journal, 1978, 24:753-781. [31] 何彦庆, 郑丽, 闫长辉, 等. 页岩储层标准等温吸附曲线的建立:以鄂尔多斯盆地长7 页岩储层为例[J]. 岩性油气藏, 2018, 30(3):92-99. HE Yanqing, ZHENG Li, YAN Changhui, et al. Establishment of standard adsorption isotherms for shale reservoirs:A case of Chang 7 shale reservoir in Ordos Basin[J]. Lithologic Reservoirs, 2018, 30(3):92-99. [32] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3):14-23. YANG Fu, HE Dan, MA Dongmin, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithologic Reservoirs, 2020, 32(3):14-23. [33] 施雷庭, 赵启明, 任镇宇, 等. 煤岩裂隙形态对渗流能力影响数值模拟研究[J]. 油气藏评价与开发, 2023, 13(4):424-432. SHI Leiting, ZHAO Qiming, REN Zhenyu, et al. Numerical simulation study on the influence of coal rock fracture morphology on seepage capacity[J]. Petroleum Reservoir Evaluation and Development, 2023, 13(4):424-432. [34] 马东民, 高正, 陈跃, 等. 不同温度下低、中、高阶煤储层甲烷吸附解吸特征差异[J]. 油气藏评价与开发, 2020, 10(4):17-24. MA Dongmin, GAO Zheng, CHEN Yue, et al. Differences in methane adsorption and desorption characteristics of low, medium and high rank coal reservoirs at different temperatures[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(4):17-24. [35] 陈卓, 周萍, 梅炽, 等. 传递过程原理[M]. 长沙:中南大学出版社, 2011:433. CHEN Zhuo, ZHOU Ping, MEI Chi, et al. Principle of transfer process[M]. Changsha:Central South University Press, 2011:433. [36] SING K S W, EVERETT D H, HAUL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure and Applied Chemistry, 1985, 57:603-619. [37] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution(IUPAC Technical Report)[J]. Chemistry International, 2015, 87:1051-1069. |
[1] | YU Qixiang, LUO Yu, DUAN Tiejun, LI Yong, SONG Zaichao, WEI Qingliang. Reservoir forming conditions and exploration prospect of Jurassic coalbed methane encircling Dongdaohaizi sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 45-55. |
[2] | ZHANG Tianze, WANG Hongjun, ZHANG Liangjie, ZHANG Wenqi, XIE Mingxian, LEI Ming, GUO Qiang, ZHANG Xuerui. Application of ray-path elastic impedance inversion in carbonate gas reservoir prediction of the right bank of Amu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 56-65. |
[3] | GOU Honguang, LIN Tong, FANG Qiang, ZHANG Hua, LI Shan, CHENG Yi, You Fan. Stratigraphic division of astronomical cycle in early-middle Jurassic Shuixigou Group in the Shengbei subsag of Tuha Basin [J]. Lithologic Reservoirs, 2024, 36(6): 89-97. |
[4] | ZHANG Peijun, XIE Mingxian, LUO Min, ZHANG Liangjie, CHEN Renjin, ZHANG Wenqi, YUE Xingfu, LEI Ming. Analysis of deformation mechanism of ultra thick gypsum salt rock and its significance for oil and gas reservoir formation:A case study of the Jurassic gypsum salt layers in theAgayry region,eastern right bank of theAmu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 36-44. |
[5] | QIAO Tong, LIU Chenglin, YANG Haibo, WANG Yifeng, LI Jian, TIAN Jixian, HAN Yang, ZHANG Jingkun. Characteristics and genetic mechanism of condensate oil and gas of the Jurassic Sangonghe Formation in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 169-180. |
[6] | YAN Xueying, SANG Qin, JIANG Yuqiang, FANG Rui, ZHOU Yadong, LIU Xue, LI Shun, YUAN Yongliang. Main controlling factors for the high yield of tight oil in the Jurassic Da’anzhai Section in the western area of Gongshanmiao, Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(6): 98-109. |
[7] | LI Daoqing, CHEN Yongbo, YANG Dong, LI Xiao, SU Hang, ZHOU Junfeng, QIU Tingcong, SHI Xiaoqian. Intelligent comprehensive prediction technology of coalbed methane “sweet spot”reservoir of Jurassic Xishanyao Formation in Baijiahai uplift,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(6): 23-35. |
[8] | CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121. |
[9] | ZHANG Xiaoli, WANG Xiaojuan, ZHANG Hang, CHEN Qin, GUAN Xu, ZHAO Zhengwang, WANG Changyong, TAN Yaojie. Reservoir characteristics and main controlling factors of Jurassic Shaximiao Formation in Wubaochang area,northeastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 87-98. |
[10] | HE Wenyuan, CHEN Keyang. Prediction method for lithologic reservoirs in Doshan slope zone of South Turgai Basin,Kazakhstan [J]. Lithologic Reservoirs, 2024, 36(4): 1-11. |
[11] | ZOU Liansong, XUWenli, LIANG Xiwen, LIU Haotian, ZHOU Kun, HOU Fei, ZHOU Lin, WEN Huaguo. Sedimentary characteristics and sources of shale of Dongyuemiao member of Lower Jurassic Ziliujing Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 122-135. |
[12] | ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158. |
[13] | BAI Xuefeng, LI Junhui, ZHANG Dazhi, WANG Youzhi, LU Shuangfang, SUI Liwei, WANG Jiping, DONG Zhongliang. Geological characteristics and enrichment conditions of shale oil of Jurassic Lianggaoshan Formation in Yilong-Pingchang area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(2): 52-64. |
[14] | LI Qihui, REN Dazhong, NING Bo, SUN Zhen, LI Tian, WAN Cixuan, YANG Fu, ZHANG Shiming. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 76-88. |
[15] | YANG Bowei, SHI Wanzhong, ZHANG Xiaoming, XU Xiaofeng, LIU Yuzuo, BAI Luheng, YANG Yang, CHEN Xianglin. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou [J]. Lithologic Reservoirs, 2024, 36(1): 45-58. |
|