Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (4): 57-70.doi: 10.12108/yxyqc.20240406

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag

ZHANG Lei1,2, LI Sha3, LUO Bobo1,2, LYU Boqiang1,2, XIE Min1,2, CHEN Xinping1,2, CHEN Dongxia3, DENG Caiyun1,2   

  1. 1. Research Institute of Exploration and Production, Zhongyuan Oilfield Company, Sinopec, Puyang 457001, Henan, China;
    2. Zhongyuan Oilfield Branch Company, Sinopec, Puyang 457001, Henan, China;
    3. National Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China
  • Received:2023-08-18 Revised:2023-12-06 Online:2024-07-01 Published:2024-07-04

Abstract: The processes of hydrocarbon generation,migration and accumulation are complex with tight reservoirs and widespread overpressure in the deep area of Dongpu Sag. A systematic study was conducted on the formation mechanism of overpressure,the effects of overpressure on source rocks and reservoirs,as well as the dynamics of hydrocarbon migration in the third member of Paleogene Shahejie Formation in northern Dongpu Sag by using wire-logging,mud-logging,drilling,and geochemical analysis data,and the accumulation mechanisms of deep overpressured lithologic reservoirs were elucidated. The results show that:(1)There are five types of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag, which are three pure lithologic reservoirs and two compound reservoirs. The pure lithologic reservoirs include updip pinch-out sandstone reservoirs,sand lens reservoirs and fractured reservoirs,while the compound reservoirs are lithologic-structural reservoirs and structural-lithologic reservoirs. The lithologic reservoirs are mainly distributed in the northern Dongpu Sag,especially around Qianliyuan subsag,Haitongji subsag,Liutun subsag and PuchengWeicheng subsag,with the characteristics of“orderly distribution around sags”.(2)The deep overpressure caused by the thick gypsum salt rocks and the process of hydrocarbon generation in the study area can inhibit the hydrocarbon generation of source rocks,effectively enlarging the oil generation window,enhancing the hydrocarbon generation ability of deep source rocks,and promoting large-scale near source hydrocarbon supply to lithologic reservoirs around the sag. The distribution of high-quality reservoirs is controlled by gypsum salt rocks,rapid burial in the early stage,anti-compaction of overpressure and dissolution in the late stage. The synergistic action of overpressure and buoyancy widely developed in the deep,provides an effective driving force for deep oil and gas migration.(3)The hydrocarbon accumulation model of the eastern sag belt in the study area is“single sag with single source,early miscible phase and late gas phase charging,self-generating and self preserving,hydrocarbon migration and accumulation driven by overpressure”. The hydrocarbon accumulation model of the eastern steep slope zone is“single sag with multi-source,early miscible phase and late gas phase charging,lateral hydrocarbon migration and accumulation driven by overpressure and buoyancy”. The hydrocarbon accumulation model of the western slope zone is“single sag with multi-source,oil phase charging,lateral hydrocarbon migration and accumulation driven by overpressure and buoyancy”. The hydrocarbon accumulation model of the western sag belt is“single sag with single source,oil phase charging,lateral hydrocarbon migration and accumulation driven by overpressure and buoyancy”.

Key words: lithologic reservoir, near source hydrocarbon supply, gypsum salt rock, overpressure drive, buoyancy drive, lateral hydrocarbon migration and accumulation, the third member of Shahejie Formation, Paleogene, Dongpu Sag

CLC Number: 

  • TE122.1
[1] 李阳,薛兆杰,程喆,等.中国深层油气勘探开发进展与发展方向[J].中国石油勘探,2020,25(1):45-57. LI Yang,XUE Zhaojie,CHENG Zhe,et al.Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration,2020,25(1):45-57.
[2] 张东东,刘文汇,王晓锋,等.深层油气藏成因类型及其特征[J].石油与天然气地质,2021,42(5):1169-1180. ZHANG Dongdong,LIU Wenhui,WANG Xiaofeng,et al. Genetic types and characteristics of deep oil and gas plays[J]. Oil&Gas Geology,2021,42(5):1169-1180.
[3] 石昕,戴金星,赵文智.深层油气藏勘探前景分析[J].中国石油勘探,2005,10(1):1-10. SHI Xin,DAI Jinxing,ZHAO Wenzhi. Analysis of deep oil and gas reservoirs exploration prospect[J]. China Petroleum Exploration,2005,10(1):1-10.
[4] 戴金星,黄世鹏,刘岩,等.中国天然气勘探开发60年的重大进展[J].石油与天然气地质,2010,31(6):689-698. DAI Jinxing,HUANG Shipeng,LIU Yan,et al. Significant advancement in natural gas exploration and development in China during the past sixty years[J]. Oil&Gas Geology,2010,31(6):689-698.
[5] 白国平,曹斌风.全球深层油气藏及其分布规律[J].石油与天然气地质,2014,35(1):19-26. BAI Guoping,CAO Binfeng. Characteristics and distribution patterns of deep petroleum accumulations in the world[J]. Oil&Gas Geology,2014,35(1):19-26.
[6] 何治亮,马永生,朱东亚,等.深层-超深层碳酸盐岩储层理论技术进展与攻关方向[J].石油与天然气地质,2021,42(3):533-546. HE Zhiliang,MA Yongsheng,ZHU Dongya,et al. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs[J]. Oil&Gas Geology,2021, 42(3):533-546.
[7] 宋明水,王永诗,郝雪峰,等.渤海湾盆地东营凹陷古近系深层油气成藏系统及勘探潜力[J].石油与天然气地质,2021,42(6):1243-1254. SONG Mingshui,WANG Yongshi,HAO Xuefeng,et al. Petroleum systems and exploration potential in deep Paleogene of the Dongying Sag,Bohai Bay Basin[J]. Oil&Gas Geology, 2021,42(6):1243-1254.
[8] 李剑,佘源琦,高阳,等.中国陆上深层-超深层天然气勘探领域及潜力[J].中国石油勘探,2019,24(4):403-417. LI Jian,SHE Yuanqi,GAO Yang,et al. Onshore deep and ultradeep natural gas exploration fields and potentials in China[J]. China Petroleum Exploration,2019,24(4):403-417.
[9] 谈玉明,徐田武,张云献,等.东濮凹陷天然气富集规律[J].断块油气田,2017,24(4):442-447. TAN Yuming,XU Tianwu,ZHANG Yunxian,et al. Gas accumulation regularity of Dongpu Depression[J]. Fault-Block Oil&Gas Field,2017,24(4):442-447.
[10] 徐田武,张洪安,李继东,等.渤海湾盆地东濮凹陷盐湖相成烃成藏特征[J].石油与天然气地质,2019,40(2):248-261. XU Tianwu,ZHANG Hong'an,LI Jidong,et al. Characters of hydrocarbon generation and accumulation of salt-lake facies in Dongpu Sag,Bohai Bay Basin[J]. Oil&Gas Geology,2019, 40(2):248-261.
[11] 李红磊,张云献,周勇水,等.东濮凹陷优质烃源岩生烃演化机理[J].断块油气田,2020,27(2):143-148. LI Honglei,ZHANG Yunxian,ZHOU Yongshui,et al. Hydrocarbon evolution mechanism of high quality source rock in Dongpu Sag[J]. Fault-Block Oil&Gas Field,2020,27(2):143-148.
[12] 高渐珍,薛国刚,慕小水,等.东濮凹陷复杂断块群成藏主控因素及成藏模式[J].断块油气田,2011,18(6):691-695. GAO Jianzhen,XUE Guogang,MU Xiaoshui,et al. Main control factors and patterns of hydrocarbon accumulation in complex fault block group of Dongpu Depression[J]. Fault-Block Oil&Gas Field,2011,18(6):691-695.
[13] 信凤龙.东濮凹陷油气分布不均一性及其主控因素[D].青岛:中国石油大学(华东),2018. XIN Fenglong. Heterogeneity and main controlling factors of hydrocarbon distribution in Dongpu Depression[D]. Qiangdao:China University of Petroleum (East China),2018.
[14] 何家豪,郭彬程.东濮凹陷--深层天然气地球化学特征及主控因素[J].当代化工研究,2019(5):77-78. HE Jiahao,GUO Bincheng. Dongpu Depression:Geochemical characteristics and main control factors of deep natural gas[J]. Modern Chemical Research,2019(5):77-78.
[15] 孙波,蒋有录,石小虎,等.渤海湾盆地东濮凹陷压力演化与超压形成机制[J].中国石油大学学报(自然科学版),2013,37(2):28-35. SUN Bo,JIANG Youlu,SHI Xiaohu,et al. Pressure evolution and formation mechanism of overpressure in Dongpu Depression,Bohaiwan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),2013,37(2):28-35.
[16] 慕小水,何锋,顾勤,等.渤海湾盆地东濮凹陷濮卫洼陷带复杂岩性油气藏形成条件与成藏规律[J].石油实验地质,2009, 31(5):472-477. MU Xiaoshui,HE Feng,GU Qin,et al. Complex lithologic reservoir formation condition and laws in Puwei sub-depression, Dongpu Sag,Bohai Bay Basin[J]. Petroleum Geology&Experiment,2009,31(5):472-477.
[17] 刘景东,蒋有录.东濮凹陷中央隆起带北部古近系异常高压与油气成藏的关系[J].天然气工业,2012,32(12):30-36. LIU Jingdong,JIANG Youlu. Relationship between abnormally high pressure and hydrocarbon accumulation of the Paleogene reservoirs in the northern part of central uplift,Dongpu Sag, Bohai Bay Basin[J]. Natural Gas Industry,2012,32(12):30-36.
[18] 许书堂.东濮凹陷岩性油气藏分布规律及目标预测[D].北京:中国地质大学(北京),2006. XU Shutang. Lithologic reservoir distribution law and target prediction of Dongpu Depression[D]. Beijing:China University of Geosciences (Beijing),2006.
[19] 高红灿,郑荣才,肖应凯,等.渤海湾盆地东濮凹陷古近系沙河街组盐岩成因:来自沉积学和地球化学的证据[J].石油学报,2015,36(1):19-32. GAO Hongcan,ZHENG Rongcai,XIAO Yingkai,et al. Origin of the salt rock of Paleogene Shahejie Formation in Dongpu Sag,Bohai Bay Basin:Evidences from sedimentology and geochemistry[J]. Acta Petrolei Sinica,2015,36(1):19-32.
[20] 苏惠,曲丽萍,李桂霞,等.东濮凹陷平衡剖面与构造演化研究[J].石油地球物理勘探,2000,35(4):469-478. SU Hui,QU Liping,LI Guixia,et al. Balanced section and tectonic evolution in the Dongpu Depression[J]. Oil Geophysical Prospecting,2000,35(4):469-478.
[21] 张克鑫,漆家福,赵衍彬,等.新生代东濮凹陷构造特征及其演化[J].新疆石油地质,2007,28(6):714-717. ZHANG Kexin,QI Jiafu,ZHAO Yanbin,et al. Structure and evolution of cenozoic in Dongpu Sag[J]. Xinjiang Petroleum Geology,2007,28(6):714-717.
[22] 余海波,程秀申,漆家福,等.东濮凹陷古近纪断裂活动对沉积的控制作用[J].岩性油气藏,2019,31(5):12-23. YU Haibo,CHENG Xiushen,QI Jiafu,et al. Control of fault activity on sedimentation of Paleogene in Dongpu Sag[J]. Lithologic Reservoirs,2019,31(5):12-23.
[23] 蒋有录,房磊,谈玉明,等.渤海湾盆地东濮凹陷不同区带油气成藏期差异性及主控因素[J].地质论评,2015,61(6):1321-1331. JIANG Youlu,FANG Lei,TAN Yuming,et al. Differences and main controlling factors of accumulation periodsin Dongpu Sag, Bohai Bay Basin[J]. Geological Review,2015,61(6):1321-1331.
[24] 苏惠,许化政,张金川,等.东濮凹陷沙三段盐岩成因[J].石油勘探与开发,2006,33(5):600-605. SU Hui,XU Huazheng,ZHANG Jinchuan,et al. Origin of 3rd member salt rock of Shahejie Formation in Dongpu Sag[J]. Petroleum Exploration and Development,2006,33(5):600-605.
[25] DOWNEY M W. Evaluating seals for hydrocarbon accumulation[J]. AAPG Bulletin,1984,68(11):1752-1763.
[26] HUNT J M. Petroleum geochemistry and geology[M]. New York:W. H. Freeman&Co.,1996:743.
[27] 徐士林,吕修祥,杨明慧,等.库车坳陷膏盐岩对异常高压保存的控制作用[J].西安石油大学学报(自然科学版),2004,19(4):5-8. XU Shilin,LYU Xiuxiang,YANG Minghui,et al. Controlling effect of gypsum and salt rocks on abnormally high pressure in Kuche Depression[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2004,19(4):5-8.
[28] 赵振宇,周瑶琪,马晓鸣,等.含油气盆地中膏盐岩层对油气成藏的重要影响[J].石油与天然气地质,2007,28(2):299-308. ZHAO Zhenyu,ZHOU Yaoqi,MA Xiaoming,et al. The impact of saline deposit upon the hydrocarbon accumulation in petroliferous basin[J]. Oil&Gas Geology,2007,28(2):299-308.
[29] MEISSNER F F. Petroleum geology of the Bakken Formation, Williston Basin,north Dakota and Montana[R]. The 24th Annual Conference of Williston Basin Symposium,Montana Geological Society,1978:207-227.
[30] 苗建宇,祝总祺,刘文荣,等.济阳坳陷下第三系温度、压力与深部储层次生孔隙的关系[J].石油学报,2000,21(3):36-40. MIAO Jianyu,ZHU Zongqi,LIU Wenrong,et al. Relationship between temperature-pressure and secondary pores of deep reservoirs in Eogene at Jiyang Depression[J]. Acta Petrolei Sinica, 2000,21(3):36-40.
[31] 郭小文,何生,宋国奇,等.东营凹陷生油增压成因证据[J].地球科学--中国地质大学学报,2011,36(6):1085-1094. GUO Xiaowen,HE Sheng,SONG Guoqi,et al. Evidences of overpressure caused by oil generation in Dongying Depression[J]. Earth Science-Journal of China University of Geosciences, 2011,36(6):1085-1094.
[32] 郝芳,姜建群,邹华耀,等.超压对有机质热演化的差异抑制作用及层次[J].中国科学D辑:地球科学,2004,34(5):443-451. HAO Fang,JIANG Jianqun,ZOU Huayao,et al. Differential inhibition effect and level of overpressure on thermal evolution of organic matter[J]. Science in China Series D:Earth Sciences, 2004,34(5):443-451.
[33] CARR A D. A vitrinite reflectance kinetic model incorporating overpressure retardation[J]. Marine and Petroleum Geology, 1999,16(3):355-377.
[34] 郝芳.超压盆地生烃作用动力学与油气成藏机理[M].北京:科学出版社,2005. HAO Fang. Dynamics of hydrocarbon generation and hydrocarbon accumulation mechanism in overpressure basins[M]. Beijing:Science Press,2005.
[35] 郝芳,邹华耀,倪建华,等.沉积盆地超压系统演化与深层油气成藏条件[J].地球科学--中国地质大学学报,2002,27(5):610-615. HAO Fang,ZOU Huayao,NI Jianhua,et al. Evolution of overpressured systems in sedimentary basins and conditions for deep oil/gas accumulation[J]. Earth Science-Journal of China University of Geosciences,2002,27(5):610-615.
[36] 庞雄奇,李素梅,金之钧,等.排烃门限存在的地质地球化学证据及其应用[J].地球科学-中国地质大学学报,2004,29(4):384-390. PANG Xiongqi,LI Sumei,JIN Zhijun,et al. Geochemical evidences of hydrocarbon expulsion threshold and its application[J]. Earth Science-Journal of China University of Geosciences, 2004,29(4):384-390.
[37] 孙龙德,方朝亮,李峰,等.油气勘探开发中的沉积学创新与挑战[J].石油勘探与开发,2015,42(2):129-136. SUN Longde,FANG Chaoliang,LI Feng,et al. Innovations and challenges of sedimentology in oil and gas exploration and development[J]. Petroleum Exploration and Development,2015,42(2):129-136.
[38] 罗晓容,杨海军,王震亮,等.深层-超深层碎屑岩储层非均质性特征与油气成藏模式[J].地质学报,2023,97(9):2802-2819. LUO Xiaorong,YANG Haijun,WANG Zhenliang,et al. Heterogeneity characteristics of clastic reservoirs and hydrocarbon accumulation mode in deep-ultradeep basins[J]. Acta Geologica Sinica,2023,97(9):2802-2819.
[39] 吴海,赵孟军,鲁雪松,等.膏盐岩层控藏机制研究进展[J].地质科技情报,2016,35(3):77-86. WU Hai,ZHAO Mengjun,LU Xuesong,et al. Research progress of hydrocarbon accumulation mechanism controlled by salt[J]. Geological Science and Technology Information,2016,35(3):77-86.
[40] JOWETT E C,CATHLES Ⅲ L M,DAVIS B W.蒸发盐沉积盆地中石膏脱水深度的预测[J].国外油气勘探,1994,6(4):391-401. JOWETT E C,Cathles Ⅲ L M,DAVIS B W,et al. Prediction of gypsum dewatering depth in evaporite sedimentary basin[J]. Foreign Oil and Gas Exploration,1994,6(4):391-401.
[41] 蔡春芳,梅博文,马亭,等.塔里木盆地有机酸来源、分布及对成岩作用的影响[J].沉积学报,1997,15(3):103-109. CAI Chunfang,MEI Bowen,MA Ting,et al. The source,distribution of organic acids in oilfield waters and their effects on mineral diagenesis in Tarim Basin[J]. Acta Sedimentologica Sinica,1997,15(3):103-109.
[42] 查明,曲江秀,张卫海.异常高压与油气成藏机理[J].石油勘探与开发,2002,29(1):19-23. ZHA Ming,QU Jiangxiu,ZHANG Weihai. The relationship between overpressure and reservoir forming mechanism[J]. Petroleum Exploration and Development,2002,29(1):19-23.
[43] 金之钧,谢方克.中国典型含油气盆地地层压力分布特征[J].石油大学学报(自然科学版),2002,26(6):1-16. JIN Zhijun,XIE Fangke. Distribution features of formation pressure in typical petroliferous basin of China[J]. Journal of the University of Petroleum,China (Natural Science Edition),2002, 26(6):1-16.
[44] 王瑞飞,沈平平,赵良金.深层储集层成岩作用及孔隙度演化定量模型:以东濮凹陷文东油田沙三段储集层为例[J].石油勘探与开发,2011,38(5):552-559. WANG Ruifei,SHEN Pingping,ZHAO Liangjin. Diagenesis of deep sandstone reservoirs and a quantitative model of porosity evolution:Taking the third member of Shahejie Formation in the Wendong Oilfield,Dongpu Sag,as an example[J]. Petroleum Exploration and Development,2011,38(5):552-559.
[45] 何玉,周星,李少轩,等.渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J].岩性油气藏,2022,34(3):60-69. HE Yu,ZHOU Xing,LI Shaoxuan,et al. Genesis and logging response characteristics of formation overpressure of Paleogenein Bozhong Sag,Bohai Bay Basin[J]. Lithologic Reservoirs, 2022,34(3):60-69.
[46] 杨楷乐,何胜林,杨朝强,等.高温-超压-高CO2背景下致密砂岩储层成岩作用特征:以莺歌海盆地LD10区新近系梅山组-黄流组为例[J].岩性油气藏,2023,35(1):83-95. YANG Kaile,HE Shenglin,YANG Zhaoqiang,et al. Diagenesis characteristics of tight sandstone reservoirs with high temperature,overpressure and high CO2 content:A case study of Neogene Meishan-Huangliu Formation in LD10 area,Yinggehai Basin[J]. Lithologic Reservoirs,2023,35(1):83-95.
[47] 杨韬政,刘成林,田继先,等.柴达木盆地大风山凸起地层压力预测及成因分析[J].岩性油气藏,2023,35(1):96-107. YANG Taozheng,LIU Chenglin,TIAN Jixian,et al. Prediction and genesis of formation pressure in Dafengshan uplift,Qaidam Basin[J]. Lithologic Reservoirs,2023,35(1):96-107.
[48] 杨润泽,赵贤正,刘海涛,等.渤海湾盆地黄骅坳陷古生界源内和源下油气成藏特征及有利区预测[J].岩性油气藏, 2023,35(3):110-125. YANG Runze,ZHAO Xianzheng,LIU Haitao,et al. Hydrocarbon accumulation characteristics and favorable zones prediction in and under source of Paleozoic in Huanghua Depression, Bohai Bay Basin[J]. Lithologic Reservoirs,2023,35(3):110-125.
[49] 马中良,郑伦举,秦建中,等.盆地沉降、抬升过程中源储压差的生排烃效应[J].石油实验地质,2011,33(4):402-407. MA Zhongliang,ZHENG Lunju,QIN Jianzhong,et al. Hydrocarbon generation and expulsion caused by pressure difference between source rock and reservoir during basin subsiding and uplifting[J]. Petroleum Geology&Experiment,2011,33(4):402-407.
[50] 窦立荣,李志,杨紫,等.中国石油海外岩性地层油气藏勘探进展与前景展望[J].岩性油气藏,2023,35(6):1-9. DOU Lirong,LI Zhi,YANG Zi,et al. Exploration progress and outlook for lithostratigraphic reservoirs of CNPC overseas[J]. Lithologic Reservoirs,2023,35(6):1-9.
[51] 牛成民,杜晓峰,王启明,等.渤海海域新生界大型岩性油气藏形成条件及勘探方向[J].岩性油气藏,2022,34(3):1-14. NIU Chengmin,DU Xiaofeng,WANG Qiming,et al. Formation conditions and exploration direction of large-scale lithologic reservoirs of Cenozoic in Bohai Sea[J]. Lithologic Reservoirs, 2022,34(3):1-14.
[52] POWLEY D E. Pressures and hydrogeology in petroleum basins[J]. Earth-Science Reviews,1990,29(1/2/3/4):215-226.
[53] 余海波.东濮凹陷构造特征及古生界有利勘探区带评价[J].岩性油气藏,2022,34(6):72-79. YU Haibo. Tectonic characteristics and favorable exploration zones of Paleozoic in Dongpu Sag[J]. Lithologic Reservoirs, 2022,34(6):72-79.
[1] ZHANG Peijun, XIE Mingxian, LUO Min, ZHANG Liangjie, CHEN Renjin, ZHANG Wenqi, YUE Xingfu, LEI Ming. Analysis of deformation mechanism of ultra thick gypsum salt rock and its significance for oil and gas reservoir formation:A case study of the Jurassic gypsum salt layers in theAgayry region,eastern right bank of theAmu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 36-44.
[2] CHENG Yan, WANG Bo, ZHANG Tongyao, QI Yumin, YANG Jilei, HAO Peng, LI Kuo, WANG Xiaodong. Oil and gas migration characteristics of lithologic reservoirs of Neogene Minghuazhen Formation in Bozhong A-2 area,Bozhong Sag [J]. Lithologic Reservoirs, 2024, 36(5): 46-55.
[3] YI Zhenli, SHI Fang, YIN Taiju, LI Bin, LI Meng, LIU Liu, WANG Zhukun, YU Ye. Provenance transformation and sedimentary filling response of Mesozoic in Halahatang-Hade area,Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(5): 56-66.
[4] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[5] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[6] XI Zhibo, LIAO Jianping, GAO Rongjin, ZHOU Xiaolong, LEI Wenwen. Tectonic evolution and hydrocarbon accumulation in northern Chenjia fault zone,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 127-136.
[7] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[8] FANG Xuqing, ZHONG Qi, ZHANG Jianguo, LI Junliang, MENG Tao, JIANG Zaixing, ZHAO Haibo. Cyclostratigraphy analysis and stratigraphic division of lower Sha-3 member of Paleogene in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 19-30.
[9] WANG Ya, LIU Zongbin, LU Yan, WANG Yongping, LIU Chao. Flow unit division based on SSOM and its production application: A case study of sublacustrine turbidity channels of middle Es3 in F oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(2): 160-169.
[10] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[11] HONG Guoliang, WANG Hongjun, ZHU Houqin, BAI Zhenhua, WANG Wenwen. Hydrocarbon accumulation conditions and favorable zones of lithologic reservoirs of Miocene Gumai Formation in block J,South Sumatra Basin [J]. Lithologic Reservoirs, 2023, 35(6): 138-146.
[12] WANG Xueke, WANG Zhen, JI Zhifeng, YIN Wei, JIANG Ren, HOU Yu, ZHANG Yiqiong. Hydrocarbon accumulation rules and exploration technologies of Carboniferous subsalt carbonate reservoirs in the eastern margin of Pre-Caspian Basin [J]. Lithologic Reservoirs, 2023, 35(6): 54-62.
[13] LI Hengxuan, WEN Zhixin, SONG Chengpeng, LIU Zuodong, JI Tianyu, SHEN Yiping, GENG Ke. Evolution of Senegal Basin and exploration prospects of lithologic reservoirs [J]. Lithologic Reservoirs, 2023, 35(6): 45-53.
[14] XIA Mingjun, SHAO Xinjun, YANG Hua, WANG Zhongsheng, LI Zhiyu, ZHANG Chaoqian, YUAN Ruier, FA Guifang. Classification and categorization method of overseas lithologic reservoir reserves [J]. Lithologic Reservoirs, 2023, 35(6): 37-44.
[15] MA Feng, PANG Wenzhu, ZHAO Wenguang, ZHANG Bin, ZHAO Yanjun, XUE Luo, ZHENG Xi, CHEN Bintao. Main controlling factors and hydrocarbon accumulation models of structurallithologic reservoirs above source kitchen in rift basins in South Sudan [J]. Lithologic Reservoirs, 2023, 35(6): 92-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: