Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (3): 146-157.doi: 10.12108/yxyqc.20240314

• PETROLEUM EXPLORATION • Previous Articles    

Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression

ZHU Kangle1,2,3, GAO Gang1,2, YANG Guangda4, ZHANG Dongwei4, ZHANG Lili5, ZHU Yixiu1,2, LI Jing6   

  1. 1. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    2. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    3. No. 7 Oil Production Plant, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    4. Research Institute of Exploration and Development, PetroChina Liaohe Oilfield Company, Panjin 124010, Liaoning, China;
    5. No. 8 Oil Production Plant, PetroChina Changqing Oilfield Company, Yulin 718600, Shaanxi, China;
    6. Research Institute of Exploration and Development, PetroChina Yumen Oilfield Company, Jiuquan 735000, Gansu, China
  • Received:2022-08-24 Revised:2022-10-03 Published:2024-04-30

Abstract: Based on the analysis of organic carbon, rock pyrolysis, chloroform bitumen“A”, saturated hydro‐carbon chromatography-mass spectrometry and fluid inclusions, the characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Formation in Qingshui subsag of Liaohe Depression were analyzed. The results show that:(1)The deep source rocks of Paleogene Shahejie Formation in Qingshui subsag are mainly developed in E2s32 submember, E2s33 submember and E2s4 member, mudstone of sublayerⅡ of E2s32 submember is most developed, mainly dark gray thick mudstone, with an overall thickness of about 170 m.(2)The average TOC content of the deep source rocks in the study area can reach 1.60%, and the average hydrocarbon generation potential is 2.82 mg/g. The organic matters are mainly type Ⅱ1-Ⅲ, mainly contributed by the mixing of phytoplankton and higher plants, and are in a weakly oxidizing-weakly reducing lacustrine saline water sedimentary environment. With Ro value ranging from 0.5% to 1.5%, the source rocks have generally reached the stage of massive hydrocarbon generation, and some have reached the stage of highly matured evolution.(3)The deep source rocks in the study area entered the oil-generating window at 38 Ma, and a large amount of natural gas began to be generated at 20 Ma. Fluid inclusions show that there are two stages of oil and gas charging in the study area, namely 38-26 Ma and 20 Ma to present, matching the evolution history of hydrocarbon generation.

Key words: geochemical characteristics of source rocks, biomarker, fluid inclusion, saltwater lake, accumulation model, Shahejie Formation, Paleogene, Qingshui subsag, Liaohe Dep

CLC Number: 

  • TE357.4
[1] 梁明亮,王作栋,郑建京,等. 辽河断陷烃源岩有机地球化学特征[J]. 岩性油气藏,2014,26(4):110-116. LIANG Mingliang,WANG Zuodong,ZHENG Jianjing,et al. Organic geochemistry characteristics of source rocks in Liaohe Depression[J]. Lithologic Reservoirs,2014,26(4):110-116.
[2] 李龙,李渔刚,韩东. 辽河坳陷清水洼陷深层油藏形成主控因素研究与勘探实践[J]. 石油科技论坛,2022,41(2):1-8. LI Long,LI Yugang,HAN Dong. Study of main factors controlling deep-layer reservoir and exploration practice in Qingshui Sag of Liaohe Depression[J]. Petroleum Science and Technology Forum,2022,41(2):1-8.
[3] 胡英杰,王延山,黄双泉,等. 辽河坳陷石油地质条件、资源潜力及勘探方向[J]. 海相油气地质,2019,24(2):43-54. HU Yingjie,WANG Yanshan,HUANG Shuangquan,et al. The geological conditions,resource potential,and exploration direction of oil in Liaohe Depression[J]. Marine Origin Petroleum Geology,2019,24(2):43-54.
[4] 谢武仁,牛嘉玉,王洪亮,等. 辽河西斜坡鸳鸯沟地区岩性油气藏研究[J]. 岩性油气藏,2008,20(4):75-79. XIE Wuren,NIU Jiayu,WANG Hongliang,et al. Study on lithologic reservoirs in Yuanyanggou area of Liaohe Depression[J]. Lithologic Reservoirs,2008,20(4):75-79.
[5] 刘立峰,姜振学,周新茂,等. 烃源岩生烃潜力恢复与排烃特征分析:以辽河西部凹陷古近系烃源岩为例[J]. 石油勘探与开发,2010,37(3):378-384. LIU Lifeng,JIANG Zhenxue,ZHOU Xinmao,et al. Hydrocarbon generation potential restoration and expulsion:Taking Paleocene source rock in the western sag of Liaohe Depression as an example[J]. Petroleum Exploration and Development,2010, 37(3):378-384.
[6] 李琳,任作伟,孙洪斌. 辽河盆地西部凹陷深层石油地质综合评价[J]. 石油学报,1999,20(6):9-15. LI Lin,REN Zuowei,SUN Hongbin. An integrated evaluation on petroleum geology of the deep reservoirs in the west sag, Liaohe Basin,China[J]. Acta Petrolei Sinica,1999,20(6):9-15.
[7] 惠沙沙,庞雄奇,柳广弟,等.辽河西部凹陷沙河街组烃源岩特征及油源精细对比[J].地球科学,2023,48(8):3081-3098. HUI Shasha,PANG Xiongqi,LIU Guangdi,et al. Characteristics of Paleogene source rocks and fine oil-source correlation in Liaohe Western Depression[J]. Earth Science,2023,48(8):3081- 3098.
[8] 张东伟. 辽河西部凹陷南部深层天然气勘探潜力[J]. 科学技术与工程,2019,19(16):51-63. ZHANG Dongwei. Exploration potential of deep nature gas in the south of western sag,Liaohe Depression[J]. Science Technology and Engineering,2019,19(16):51-63.
[9] 郭永强,刘洛夫. 辽河西部凹陷沙三段岩性油气藏主控因素研究[J]. 岩性油气藏,2009,21(2):19-23. GUO Yongqiang,LIU Luofu. Controlling factors of lithologic reservoirs of Sha 3 member in West Sag of Liaohe Depression[J]. Lithologic Reservoirs,2009,21(2):19-23.
[10] 周旭红,李军,王延山,等. 辽河坳陷陆上深层天然气勘探潜力研究[J].岩性油气藏,2011,23(3):23-28. ZHOU Xuhong,LI Jun,WANG Yanshan,et al. Study on exploration potential of deep natural gas in Liaohe Depression[J]. Lithologic Reservoirs,2011,23(3):23-28.
[11] 谢玉华,朱筱敏,赵坤. 辽河西部凹陷古近系层序地层格架[J]. 科技导报,2010,28(6):58-64. XIE Yuhua,ZHU Xiaomin,ZHAO Kun. Sequence-stratigraphic framework on Paleogene of the Liaohe Western Depression[J]. Science & Technology Review,2010,28(6):58-64.
[12] 冯有良,鲁卫华,门相勇. 辽河西部凹陷古近系层序地层与地层岩性油气藏预测[J]. 沉积学报,2009,27(1):57-63. FENG Youliang,LU Weihua,MEN Xiangyong. Eogene sequence stratigraphy and stratigraphy and lithologic reservoirs prediction in Liaohe West Depression[J]. Acta Sedimentologica Sinica,2009,27(1):57-63.
[13] 漆家福,张一伟,陆克政,等. 渤海湾盆地新生代构造演化[J]. 石油大学学报(自然科学版),1995,19(增刊1):1-6. QI Jiafu,ZHANG Yiwei,LU Kezheng,et al. Cenozoic tectonic evolution in Bohai Bay Basin Province[J]. Journal of Petroleum University(Edition of Natural Science),1995,19(Suppl 1):1-6.
[14] 侯贵廷,钱祥麟,蔡东升. 渤海湾盆地中、新生代构造演化研究[J]. 北京大学学报(自然科学版),2001,37(6):845-851. HOU Guiting,QIAN Xianglin,CAI Dongsheng. The tectonic evolution of Bohai Basin in Mesozoic and Cenozoic time[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2001,37(6):845-851.
[15] 孙洪斌,张凤莲. 辽河坳陷古近系构造-沉积演化特征[J]. 岩性油气藏,2008,20(2):60-65. SUN Hongbin,ZHANG Fenglian. Structural-sedimentary evolution characteristics of Paleogene in Liaohe Depression[J]. Lithologic Reservoirs,2008,20(2):60-65.
[16] 李宏伟,许坤. 郯庐断裂走滑活动与辽河盆地构造古地理格局[J].地学前缘,2001,8(4):467-470. LI Hongwei,XU Kun. The dextral strike-slip faulting of Tan-Lu fault zone and the structural oil fields distribution in Liaohe Basin[J]. Earth Science Frontiers,2001,8(4):467-470.
[17] 于兴河,张道建,郜建军,等. 辽河油田东、西部凹陷深层沙河街组沉积相模式[J].古地理学报,1999,1(3):40-49. YU Xinghe,ZHANG Daojian,GAO Jianjun,et al. Depositional facies and modesl of deep burial strara of the Shahejie Formation in the eastern and western depressions of Liaohe Oil field[J]. Journal of Palaeogeography,1999,1(3):40-49.
[18] 张震,鲍志东,童亨茂,等. 辽河断陷西部凹陷沙三段沉积相及相模式[J]. 高校地质学报,2009,15(3):387-397. ZHANG Zhen,BAO Zhidong,TONG Hengmao,et al. Sedimentary facies and facies model of the 3rd member of Shahejie Formation in the western sag,Liaohe fault Basin[J]. Geological Journal of Chinese Universities,2009,15(3):387-397.
[19] 赵青峰,张建国,康文君,等. 辽河坳陷西部凹陷沙四上亚段震积岩特征及地质意义[J].岩性油气藏,2019,31(5):24-33. ZHAO Qingfeng,ZHANG Jianguo,KANG Wenjun,et al. Characteristics of seismites and their geological significance of the upper fourth member of Shahejie Formation in western sag,Liaohe Depression[J]. Lithologic Reservoirs,2019,31(5):24-33.
[20] 廖兴明,姚继峰,于天欣,等. 辽河盆地构造演化与油气[M]. 北京:石油工业出版社,1996:1-85. LIAO Xingming,YAO Jifeng,YU Tianxin,et al. Structural evolution and oil and gas in the Liaohe Basin[M]. Beijing:Petroleum Industry Press,1996:1-85.
[21] 徐锐. 清水洼陷断裂特征及其对油气成藏的控制作用[D]. 大庆:东北石油大学,2018. XU Rui. Qingshui Sag faults'characteristics and its controlling role in oil & gas[D]. Daqing:Northeast Petroleum University, 2018.
[22] 李明刚,漆家福,童亨茂,等. 辽河西部凹陷新生代断裂构造特征与油气成藏[J].石油勘探与开发,2010,37(3):281-288. LI Minggang,QI Jiafu,TONG Hengmao,et al.Cenozoic fault structure and hydrocarbon accumulation in western sag,Liaohe Depression[J]. Petroleum Exploration and Development,2010, 37(3):281-288.
[23] 祝厚勤,刘平兰,庞雄奇,等. 生烃潜力法研究烃源岩排烃特征的原理及应用[J]. 中国石油勘探,2008,16(3):5-9. ZHU Houqin,LIU Pinglan,PANG Xiongqi,et al. Principle of hydrocarbon-generation potential method studying hydrocarbon expulsion characteristics of source rocks and its application[J]. China Petroleum Exploration,2008,16(3):5-9.
[24] 陈建平,孙永革,钟宁宁,等. 地质条件下湖相烃源岩生排烃效率与模式[J]. 地质学报,2014,88(11):2005-2032. CHEN Jianping,SUN Yongge,ZHONG Ningning,et al. The efficiency and model of petroleum exploration from the lacustrine source rocks within geological frame[J]. Acta Geologica Sinica,2014,88(11):2005-2032.
[25] 蔡希源. 湖相烃源岩生排烃机制及生排烃效率差异性:以渤海湾盆地东营凹陷为例[J].石油与天然气地质,2012,33(3):329-334. CAI Xiyuan. Hydrocarbon generation-expulsion mechanisms and efficiencies of lacustrine source rocks:A case study from the Dongying sag,Bohai Bay Basin[J]. Oil & Gas Geology, 2012,33(3):329-334.
[26] 黄第藩,李晋超,张大江. 干酪根的类型及其分类参数的有效性、局限性和相关性[J].沉积学报,1984,2(3):18-33. HUANG Difan,LI Jinchao,ZHANG Dajiang. Kerogen types and study on effectiveness,limitation and interrelation of their identification parameters[J]. Acta Sedimentologica Sinica, 1984,2(3):18-33.
[27] PETERS K E,WALTERS C C,MORWAN J M. 生物标志化合物指南[M]. 张水昌,振西生,译. 北京:石油工业出版社, 2011:1-347. PETERS K E,WALTERS C C,MORWAN J M. Guide to biomarker compounds[M]. ZHANG Shuichang,ZHEN Xisheng, Trans. Beijing:Petroleum Industry Press,2011:1-347.
[28] SHANMUGAM G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin[J]. AAPG Bulletin,1985,69(8):1241-1254.
[29] GOOSSENS H,DELEEUW J W,SCHENCK PA,et al. Tocopherols as likely precursors of pristane in ancient sediments and crude oils[J]. Nature,1984,312(5993):440-442.
[30] GAO Gang,XU Xinde,QU Tong,et al. Petroleum origins and accumulation patterns in the Weixinan Sag in the Beibu Gulf Basin,using subsag B as an example[J]. Acta Geologica Sinica (English Edition),2020,94(5):1515-1530.
[31] ROWLAND S J. Production of acyclic isoprenoid hydrocarbons by laboratory maturation of methanogenic bacteria[J]. Organic Geochemistry,1990,15(1):9-16.
[32] 彭兴芳,李周波. 生物标志化合物在石油地质中的应用[J]. 资源环境与工程,2006,20(3):279-283. PENG Xingfang,LI Zhoubo. The application of biomarker in the research of petroleum geology[J]. Resources Environment & Engineering,2006,20(3):279-283.
[33] 傅家谟,盛国英,许家友,等. 应用生物标志化合物参数判识古沉积环境[J]. 地球化学,1991,10(1):1-12. FU Jiamo,SHENG Guoying,XU Jiayou,et al. Application of biomarker compounds in assessment of paleoenvironments of Chinese terrestrial sediments[J]. Geochimica,1991,10(1):1-12.
[34] PARKS L W,ANDING C,OURISSON G. Sterol transmethylation during aerobic adaptation of yeast[J]. European Journal of Biochemistry,2010,43(3):451-458.
[35] ADEGOKE A K,ABDULLAH W H,HAKIMI M H,et al. Geochemical characterisation of Fika Formation in the Chad (Bornu)Basin,northeastern Nigeria:Implications for depositional environment and tectonic setting[J]. Applied Geochemisty,2014,43:1-12.
[36] 任战利,田涛,李进步,等. 沉积盆地热演化史研究方法与叠合盆地热演化史恢复研究进展[J]. 地球科学与环境学报, 2014,36(3):1-21. REN Zhanli,TIAN Tao,LI Jinbu,et al. Review on methods of thermal evolution history in discipline basins and thermal evolution history reconstruction of supermposed basins[J]. Journal of Earth Science and Environment,2014,36(3):1-21.
[37] 徐景祯,王家亮. 沉积盆地热史恢复的一种优化方法[J]. 地学前缘,2000,7(4):420. XU Jingzhen,WANG Jialiang. An optimization method for thermal history restoration of sedimentary basins[J]. Earth Science Frontiers,2000,7(4):420.
[38] 欧光习,李林强,孙玉梅. 沉积盆地流体包裹体研究的理论与实践[J]. 矿物岩石地球化学通报,2006,25(1):1-11. OU Guangxi,LI Linqiang,SUN Yumei. Theory and application of the fluid inclusion research on the sedimentary Basins[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2006, 25(1):1-11.
[39] 卢焕章,郭迪江. 流体包裹体研究的进展和方向[J].地质论评,2000,46(4):385-392. LU Huanzhang,GUO Dijiang. Progress and trends of research on fluid inclusions[J]. Geological Review,2000,46(4):385-392.
[1] FANG Xuqing, ZHONG Qi, ZHANG Jianguo, LI Junliang, MENG Tao, JIANG Zaixing, ZHAO Haibo. Cyclostratigraphy analysis and stratigraphic division of lower Sha-3 member of Paleogene in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 19-30.
[2] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[3] DONG Rou, LI Kun, YIN Jihang, XUE Yuheng, JIANG Tao, XU Guosheng. Spatial-temporal differential evolution model and reservoir control effect of Cenozoic extensional and strike-slip superimposed faults in Bodong Sag [J]. Lithologic Reservoirs, 2024, 36(3): 106-116.
[4] XI Zhibo, LIAO Jianping, GAO Rongjin, ZHOU Xiaolong, LEI Wenwen. Tectonic evolution and hydrocarbon accumulation in northern Chenjia fault zone,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 127-136.
[5] WANG Ya, LIU Zongbin, LU Yan, WANG Yongping, LIU Chao. Flow unit division based on SSOM and its production application: A case study of sublacustrine turbidity channels of middle Es3 in F oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(2): 160-169.
[6] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[7] MA Wenjie, WAGN Jingchun, TIAN Zuoji, MA Zhongzhen, WAN Xuepeng, LIN Jincheng, XU Xianglin, ZHOU Yubing. Accumulation model and favorable area prediction of structural-lithologic composite reservoirs in block W,the slope zone of Oriente Basin,South America [J]. Lithologic Reservoirs, 2023, 35(6): 29-36.
[8] MA Feng, PANG Wenzhu, ZHAO Wenguang, ZHANG Bin, ZHAO Yanjun, XUE Luo, ZHENG Xi, CHEN Bintao. Main controlling factors and hydrocarbon accumulation models of structurallithologic reservoirs above source kitchen in rift basins in South Sudan [J]. Lithologic Reservoirs, 2023, 35(6): 92-105.
[9] LI Shengqian, ZENG Jianhui, LIU Yazhou, LI Miao, JIAO Panpan. Reservoir diagenesis and pore evolution of Paleogene Pinghu Formation in Kongqueting area of Xihu Sag,East China Sea Basin [J]. Lithologic Reservoirs, 2023, 35(5): 49-61.
[10] WEI Quanchao, LI Xiaojia, LI Feng, HAO Jingyu, DENG Shuanglin, WU Juan, DENG Bin, WANG Daojun. Development characteristics and significance of fracture veins of Lower Cambrian Qiongzhusi Formation in Wangcang area at Micang Mountain front, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(5): 62-70.
[11] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[12] MAN Xiao, HU Desheng, WU Jie, GONG Liyuan, LIU Zhixuan, JIANG Yingde, ZHAO Ye. Development characteristics and accumulation model of sublacustrine fans of the first member of Eocene Liushagang Formation in Weixinan Sag,Beibuwan Basin [J]. Lithologic Reservoirs, 2023, 35(4): 137-144.
[13] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 29-39.
[14] ZENG Xu, BIAN Congsheng, SHEN Rui, ZHOU Kejia, LIU Wei, ZHOU Suyan, WANG Xiaoluan. Nonlinear seepage characteristics of shale oil reservoirs of the third member of Paleogene Shahejie Formation in Qikou Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 40-50.
[15] XUE Luo, SHI Zhongsheng, MA Lun, ZHAO Yanjun, YUE Shijun, HONG Liang, WANG Lei, LEI Ming. Hydrocarbon accumulation models and exploration potential of MesoCenozoic heavy oil in northern Melut Basin,South Sudan [J]. Lithologic Reservoirs, 2023, 35(3): 76-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: