Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (3): 106-116.doi: 10.12108/yxyqc.20240310

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Spatial-temporal differential evolution model and reservoir control effect of Cenozoic extensional and strike-slip superimposed faults in Bodong Sag

DONG Rou1,2, LI Kun2, YIN Jihang2, XUE Yuheng2, JIANG Tao3, XU Guosheng2   

  1. 1. No. 11 Oil Production Plant, PetroChina Changqing Oilfield Company, Qingyang 745000, Gansu, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu 610059, China;
    3. Tianjin Branch of China National Offshore Oil Corporation, Tianjin 300452, China
  • Received:2022-12-17 Revised:2023-03-14 Online:2024-05-01 Published:2024-04-30

Abstract: Based on 3D seismic interpretation, the spatial-temporal differential evolution characteristics and reservoir control effect of Cenozoic extensional and strike-slip superimposed faults in Bodong Sag were systematically analyzed through structural profile restoration. The results show that:(1)Extensional and strike-slip superimposed faults with NNE trending as the main stem, NE trending as the derivative, and NW trending as the superposition, were widely developed in Cenozoic in Bodong Sag, and these faults can be divided into two types: strong extensional and weak strike-slip faults, strong strike-slip and weak extensional faults. The superimposed fault system has obvious characteristics of deep and shallow stratification and north-south segmentation. Vertically, the Paleogene mainly developed strong extensional and weak strike-slip faults, which are large and sparse, and the Neogene-Quaternary mainly developed strong strike slip and weak extensional faults, which are small and dense. On the plane, there are differences in the structural combination styles of the same fault in different segments.(2)The evolution of the Cenozoic extensional and strike-slip superimposed faults in the study area are manifested as early strong and late weak activity of the northern faults, inherited and continuous development of the central faults, and early weak and late strong activity of the southern faults. The evolution model can be divided into three stages:initial fault depression stage(Kongdian Formation-Sha 4 sedimentary period), strong fault depression stage (Sha 3 member-Dongying Formation sedimentary period) and strike-slip depression stage (Guantao Formation-Pingyuan Formation sedimentary period). In the initial fault depression stage, NNE-NE trending strong extensional and weak strike-slip faults superimposed, dominated by NE trending strong extensional and weak strike-slip faults, with NW trending pre-existing fault activation, dividing the depression. In the strong fault depression stage, NNE-NE trending strong extensional and weak strike-slip faults superimposed, dominated by NNE trending strong extensional and weak strike-slip faults, with NW trending fault activity weakened or stopped. In the strike-slip depression stage, NNE trending strong strike-slip and weak extensional faults superimposed, and the faults did not control the sedimentation, but has adjustment on stratigraphic distribution.(3)The development and evolution of the extensional and strike-slip superimposed faults in the study area are closely related to hydrocarbon accumulation, with the overall characteristics of early extensional faults control source, late strikeslip faults control migration, and multi-stage superimposed faults control traps. The eastern slope zone is a favorable area for hydrocarbon migration and accumulation.

Key words: extensional and strike-slip superimposed fault, fault evolution, hydrocarbon migration and accumulation, fault control reservoir, Shahejie Formation, Dongying Formation, Cenozoic, Bodong Sag

CLC Number: 

  • P618.13
[1] 吴智平,薛雁,颜世永,等. 渤海海域渤东地区断裂体系与盆地结构[J]. 高校地质学报,2013,19(3):463-471. WU Zhiping,XUE Yan,YAN Shiyong,et al. The development characteristics of the fault system and basin structures of the Bodong Sag,East China[J]. Geological Journal of China Universities,2013,19(3):463-471.
[2] 胡志伟,徐长贵,王德英,等. 渤海海域走滑断裂叠合特征与成因机制[J]. 石油勘探与开发,2019,46(2):254-267. HU Zhiwei,XU Changgui,WANG Deying,et al. Superimposed characteristics and genetic mechanism of strike-slip faults in the Bohai Sea,China[J]. Petroleum Exploration and Development,2019,46(2):254-267.
[3] 任健. 渤海海域走滑双重构造发育特征及成因机制[D]. 青岛:中国石油大学(华东),2015. REN Jian. Development characteristics and genetic mechanism of strike-slip duplex in Bohai Sea[D]. Qingdao:China University of Petroleum(East China),2015.
[4] 李坤,董柔,江涛,等. 渤海湾盆地渤东凹陷次级洼陷差异演化特征[J]. 天然气地球科学,2022,33(6):967-978. LI Kun,DONG Rou,JIANG Tao,et al. Differential evolution characteristics of secondary depressions in the Bodong Sag,Bohai Bay Basin[J]. Natural Gas Geoscience,2022,33(6):967-978.
[5] 韩立国. 济阳坳陷构造体制转换与郯庐断裂带的关系探讨[J]. 岩性油气藏,2009,21(1):72-74. HAN Liguo. Relationship between structural regime transition of Jiyang Depression and Tan-Lu fault zone[J]. Lithologic Reservoirs,2009,21(1):72-74.
[6] QI Jiafu,ZHOU Xinhuai,DENG Rongjing,et al. Structural characteristics of the Tan-Lu fault zone in Cenozoic basins offshore the Bohai Sea[J]. Science in China Series D:Earth Sciences, 2008,51(2):20-31.
[7] HUANG Lei,LIU Chiyang. Evolutionary characteristics of the sags to the east of Tan-Lu fault zone,Bohai Bay Basin(China):Implications for hydrocarbon exploration and regional tectonic evolution[J]. Journal of Asian Earth Sciences,2014,79:275-287.
[8] TENG Changyu,ZOU Huayao,HAO Fang. Control of differential tectonic evolution on petroleum occurrence in Bohai Bay Basin[J]. Science China Earth Sciences,2014,57(5):1117-1128.
[9] 万桂梅,周东红,汤良杰. 渤海海域郯庐断裂带对油气成藏的控制作用[J]. 石油与天然气地质,2009,30(4):450-454. WAN Guimei,ZHOU Donghong,TANG Liangjie. Control of the Tan-Lu fault zone on hydrocarbon accumulation in the Bohai Sea waters[J]. Oil & Gas Geology,2009,30(4):450-454.
[10] 缪欢,王延斌,何川,等. 渤海湾盆地埕北断阶带断裂发育特征及其控藏作用[J]. 岩性油气藏,2022,34(2):105-115. MIAO Huan,WANG Yanbin,HE Chuan,et al. Fault development characteristics and reservoir control in Chengbei fault step zone, Bohai Bay Basin[J]. Lithologic Reservoirs,2022,34(2):105-115.
[11] 苏圣民,蒋有录. 含油气盆地断裂带结构特征及其与油气运聚关系[J]. 中国石油大学学报(自然科学版),2021,45(4):32-41. SU Shengmin,JIANG Youlu. Fault zone structures and its relationship with hydrocarbon migration and accumulation in petroliferous basin[J]. Journal of China University of Petroleum(Edition of Natural Science),2021,45(4):32-41.
[12] 殷秀兰,张清久. 渤海海域构造应力场演化及其在油气聚集中的作用[J]. 海洋地质与第四纪地质,2007,27(5):45-50. YIN Xiulan,ZHANG Qingjiu. Evolution of the structural stress and its function during oil/gas accumulation in Bohai sea[J]. Marine Geology & Quaternary Geology,2007,27(5):45-50.
[13] 付晓飞,李坤,董柔,等. 断层封闭性研究综述[J]. 能源技术与管理,2021,46(3):24-26. FU Xiaofei,LI Kun,DONG Rou,et al. Literature review on fault sealing[J]. Energy Technology and Management,2021,46(3):24-26.
[14] 石文龙,牛成民,杨波,等. 莱州湾凹陷东北洼"走滑-伸展"复合断裂控藏机理及勘探启示[J]. 石油与天然气地质,2019, 40(5):1056-1064. SHI Wenlong,NIU Chengmin,YANG Bo,et al. Mechanism of "strike-slip-extensional"composite faults-controlled hydrocarbon accumulation in the northeastern Laizhouwan Sag,and its enlightenment for exploration[J]. Oil & Gas Geology,2019,40(5):1056-1064.
[15] 牛成民,杜晓峰,王启明,等. 渤海海域新生界大型岩性油气藏形成条件及勘探方向[J]. 岩性油气藏,2022,34(3):1-14. NIU Chengmin,DU Xiaofeng,WANG Qiming,et al. Formation conditions and exploration direction of large-scale lithologic reservoirs of Cenozoic in Bohai Sea[J]. Lithologic Reservoirs,2022,34(3):1-14.
[16] TONG Hengmao,YU Fusheng,GENG Changbo. Characteristics and evolution of strike-slip tectonics of the Liaohe Western Sag,Bohai Bay Basin[J]. Petroleum Science,2008,5(3):223-229.
[17] 李坤,董柔,徐国盛,等. 莱州湾凹陷新生代走滑-伸展叠合断裂体系发育演化模式[J]. 成都理工大学学报(自然科学版), 2021,48(1):12-22. LI Kun,DONG Rou,XU Guosheng,et al. The development and evolution model of Cenozoic strike slip-extension superposed fault system in Laizhou Bay Sag,China[J]. Journal of Chengdu University ofTechnology(Science&Technology Edition),2021, 48(1):12-22.
[18] 宗奕,梁建设,刘丽芳. 庙西凹陷构造特征[J]. 岩性油气藏, 2012,24(1):36-39. ZONG Yi,LIANG Jianshe,LIU Lifang. Structural characteristics of Miaoxi Sag[J]. Lithologic Reservoirs,2012,24(1):36-39.
[19] 黄镜嘉,李坤,江涛,等. 渤东凹陷南部新生代断裂体系发育及演化特征[J]. 矿物岩石,2022,42(4):60-70. HUANG Jingjia,LI Kun,JIANG Tao,et al. Development and evolution of Cenozoic fault system in southern Bodong Sag[J]. Mineralogy and Petrology,2022,42(4):60-70.
[20] 李春荣. 渤海海域渤东凹陷结构特征与勘探方向[J]. 海洋石油,2015,35(4):1-7. LI Chunrong. Structural characteristics and favorable hydrocarbon exploration zone of Bodong Depression in Bohai Sea area[J]. Offshore Oil,2015,35(4):1-7.
[21] XU Guosheng,XU Zhixing,GONG Deyu,et al. Relationship between Tanlu fault and hydrocarbon accumulation in Liaozhong Sag,Bohai Bay,eastern China[J]. Journal of Earth Science,2014,25(2):324-336.
[22] YE Tao,CHEN Anqing,HOU Mingcai,et al. Characteristic of the Bodong segment of the Tanlu fault zone,Bohai Sea area, eastern China:Implications for hydrocarbon exploration and regional tectonic evolution[J]. Journal of Petroleum Science and Engineering,2021,201(2):108478.
[23] 王明春,李德郁,张海义,等. 渤海西部沙北构造带断裂特征及其对沉积的控制作用[J]. 岩性油气藏,2015,27(5):167-171. WANG Mingchun,LI Deyu,ZHANG Haiyi,et al. Characteristics of fault and its controlling on deposition in Shabei structural zone of western Bohai Sea[J]. Lithologic Reservoirs,2015,27(5):167-171.
[24] 张震,徐春强,张志强,等. 渤中凹陷西次洼断裂演化特征及控藏作用[J]. 大庆石油地质与开发,2018,37(1):9-14. ZHANG Zhen,XU Chunqiang,ZHANG Zhiqiang,et al. Evolution characteristics and their controlling actions on the hydrocarbon accumulation for the faults in west subsag of Bozhong Sag[J]. Petroleum Geology & Oilfield Development in Daqing,2018,37(1):9-14.
[25] 张江涛,吴奎,黄晓波,等. 辽西凹陷北洼新生代断裂特征及控藏作用[J]. 中国海上油气,2017,29(5):39-47. ZHANG Jiangtao,WU Kui,HUANG Xiaobo,et al. Fault system characteristics and its control on hydrocarbon accumulation of the Cenozoic in northern Liaoxi Sag,Bohai sea[J]. China Offshore Oil and Gas,2017,29(5):39-47.
[26] 胡志伟,徐长贵,杨波,等. 渤海海域断裂对油气优势运移通道的影响及其控藏类型[J]. 地质科技情报,2017,36(3):38-45. HU Zhiwei,XU Changgui,YANG Bo,et al. Influences of faults on the petroleum dominant migration pathway and its controlling reservoir types in the Bohai area[J]. Geological Science and Technology Information,2017,36(3):38-45.
[27] 周立宏,肖敦清,蒲秀刚,等. 陆相断陷湖盆复式叠合油气成藏与优势相富集新模式:以渤海湾盆地歧口凹陷为例[J]. 岩性油气藏,2010,22(1):7-11. ZHOU Lihong,XIAO Dunqing,PU Xiugang,et al. New pattern of composite superimposed reservoirs and advantageous phase accumulation in continental rifted lake basin:A case study from Qikou Sag of Bohai Bay Basin[J]. Lithologic Reservoirs,2010,22(1):7-11.
[28] 武云云,马立驰,杨贵丽,等. 渤海湾盆地垦东地区新近系断裂特征及其控藏作用[J]. 石油实验地质,2017,39(1):65-70. WU Yunyun,MA Lichi,YANG Guili,et al. Fault characteristics and their controls on hydrocarbon accumulations in Neogene,Kendong area,Bohai Bay Basin[J]. Petroleum Geology & Experiment,2017,39(1):65-70.
[29] 柴永波,李伟,刘超,等. 渤海海域古近纪断裂活动对烃源岩的控制作用[J]. 断块油气田,2015,22(4):409-414. CHAI Yongbo,LI Wei,LIU Chao,et al. Controlling effect of fault activity on source rocks during Paleogene in Bohai sea area[J]. Fault-Block Oil & Gas Field,2015,22(4):409-414.
[30] 蒋有录,刘培,宋国奇,等. 渤海湾盆地新生代晚期断层活动与新近系油气富集关系[J]. 石油与天然气地质,2015,36(4):525-533. JIANG Youlu,LIU Pei,SONG Guoqi,et al. Late Cenozoic faulting activities and their influence upon hydrocarbon accumulations in the Neogene in Bohai Bay Basin[J]. Oil & Gas Geology,2015,36(4):525-533.
[31] 邓运华,薛永安,于水,等. 浅层油气运聚理论与渤海大油田群的发现[J]. 石油学报,2017,38(1):1-8. DENG Yunhua,XUE Yong'an,YU Shui,et al. Shallow hydrocarbon migration and accumulation theory and discovery of giant oilfield group in Bohai Sea[J]. Acta Petrolei Sinica,2017, 38(1):1-8.
[32] 王德英,于娅,张藜,等. 渤海海域石臼坨凸起大型岩性油气藏成藏关键要素[J]. 岩性油气藏,2020,32(1):1-10. WANG Deying,YU Ya,ZHANG Li,et al. Key factors for reservoir formation of large lithologic reservoirs in Shijiutuo uplift,Bohai Sea[J]. Lithologic Reservoirs,2020,32(1):1-10.
[33] 龚再升,蔡东升,张功成. 郯庐断裂对渤海海域东部油气成藏的控制作用[J]. 石油学报,2007,28(4):1-10. GONG Zaisheng,CAI Dongsheng,ZHANG Gongcheng. Dominating action of Tanlu fault on hydrocarbon accumulation in eastern Bohai Sea area[J]. Acta Petrolei Sinica,2007,28(4):1-10.
[1] CHENG Yan, WANG Bo, ZHANG Tongyao, QI Yumin, YANG Jilei, HAO Peng, LI Kuo, WANG Xiaodong. Oil and gas migration characteristics of lithologic reservoirs of Neogene Minghuazhen Formation in Bozhong A-2 area,Bozhong Sag [J]. Lithologic Reservoirs, 2024, 36(5): 46-55.
[2] HUANG Xiangsheng, YAN Zhuoyu, ZHANG Dongfeng, HUANG Heting, LUO Chengfei. Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 67-76.
[3] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[4] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[5] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[6] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[7] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[8] NIE Lishang, MA Jinghui, TANG Xiaofei, YANG Zhi, ZHANG Wanjin, LI Hongrui. Meso-Cenozoic tectonic events and their petroleum geological significance in Zhangpenggou area,eastern Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(5): 81-91.
[9] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[10] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Fine characterization of Cenozoic faults and its geological implications in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(4): 50-60.
[11] WANG Jiangong, LI Jiangtao, LI Xiang, GAO Yanfang, ZHANG Ping, SUN Xiujian, BAI Yadong, ZUO Mingtao. Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 1-17.
[12] ZENG Xu, BIAN Congsheng, SHEN Rui, ZHOU Kejia, LIU Wei, ZHOU Suyan, WANG Xiaoluan. Nonlinear seepage characteristics of shale oil reservoirs of the third member of Paleogene Shahejie Formation in Qikou Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 40-50.
[13] XUE Luo, SHI Zhongsheng, MA Lun, ZHAO Yanjun, YUE Shijun, HONG Liang, WANG Lei, LEI Ming. Hydrocarbon accumulation models and exploration potential of MesoCenozoic heavy oil in northern Melut Basin,South Sudan [J]. Lithologic Reservoirs, 2023, 35(3): 76-85.
[14] ZHENG Bin, DONG Ao, ZHANG Yuanzhi, ZHANG Yi, SU Shan, ZHANG Shichao, FAN Jinjin, LUO Yinshan. Fluid pressure field building process and its petroleum geological significance of Paleogene Shahejie Formatiom in Bonan sag, Jiyang Depression [J]. Lithologic Reservoirs, 2023, 35(2): 59-67.
[15] DENG Meiling, WANG Ning, LI Xinqi, CHEN Rongtao, LIU Yan, XU Yaohui. Geochemical characteristics and sedimentary environment of source rocks of the third member of Paleogene Shahejie Formation in central Laizhouwan Sag,Bohai Sea [J]. Lithologic Reservoirs, 2023, 35(1): 49-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: