Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (3): 1-17.doi: 10.12108/yxyqc.20230301

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin

WANG Jiangong1,2, LI Jiangtao3, LI Xiang1, GAO Yanfang1, ZHANG Ping1, SUN Xiujian1, BAI Yadong1, ZUO Mingtao1   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China;
    2. Key Laboratory of Reservoir Description, CNPC, Lanzhou 730020, China;
    3. PetroChina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China
  • Received:2022-08-14 Revised:2022-09-26 Online:2023-05-01 Published:2023-04-25

Abstract: Based on a large number of outcrops and core thin sections and analytical data,the petrological characteristics,microstructure,lithofacies assemblage,sedimentary environment and its controlling factors of Cenozoic saline lacustrine microbial carbonate rocks in western Qaidam Basin were studied. The results show that:(1)The lithofacies assemblage of microbial carbonate rocks in western Qaidam Basin can be divided into fan-controlled type and lake-controlled type due to the comprehensive influence of paleogeomorphology,sedimentary environment and terrigenous clastic supply. The fan-controlled lithofacies assemblage is mainly developed in the coastal environment at the edge of the lake,with large thickness and wide distribution,while the lake-controlled lithofacies assemblage is mainly developed in the basin margin slope area,fault terrace zone and shallow lakes in the basin, with small thickness and small distribution. The upper member of Paleogene Xiaganchaigou Formation is dominated by fan-controlled lithofacies assemblage,with relatively limited lake-controlled lithofacies assem-blage. Two types of lithofacies assemblages are developed in Neogene Xiayoushashan Formation.(2)The types and structural characteristics of microbial carbonate rocks in different lithofacies assemblages in the study area are quite different. Fan-controlled microbial carbonate rocks were formed in the lake transgression period. They were mainly deposited in a positive cycle,mainly consisting of thrombolites,and often stacked on thick massive glutenite. The microstructure is mainly composed of agglomerates(clots),spherules and aggregates,and the mineral composition is mainly sparry calcite. Lake-controlled microbial carbonate rocks can be developed during lake transgression and lake regression. Both positive and reverse cycle sediments are developed,and thrombolites,stromatolites and their symbiotic layers are developed,with relatively small scale,and most of them are inter-bedded with argillaceous carbonate rocks. The microstructure is more complex,and agglomerates(clots),pellets,aggregates and laminated structures are developed. The mineral composition is mainly calcite and dolomite,rich in terrigenous detritus and clay minerals,with obvious mixed sedimentation characteristics.(3)The formation of fan-controlled microbial carbonate rocks in the study area is mainly controlled by organic mineralization and chemical precipitation, while the formation of lake-controlled microbial carbonate rocks is affected by organic mineralization,chemical precipitation and physical sedimentation.

Key words: fan-controlled type, lake-controlled type, mixed sedimentation, microbial carbonates, mineralization, lithofacies assemblage, saline lake, Cenozoic, western Qaidam Basin

CLC Number: 

  • TE122.2
[1] CHIDSEY J, THOMAS C, MICHAEL D, et al. Petrography and characterization of microbial carbonates and associated facies from modern Great Salt Lake and Uinta Basin's Eocene Green River Formation in Utah, USA[J]. Geological Society, 2015, 418(1):261-286.
[2] DELLA P G. Carbonate build-ups in lacustrine, hydrothermal, and fluvial settings:Comparing depositional geometry, fabric types and geochemical signature[J]. Geological Society, 2015, 418(1):17-68.
[3] JAHNERT R J, COLLINS L B. Significance of subtidal microbial deposits in Shark Bay, Australia[J]. Marine Geology, 2011, 286:106-111.
[4] JAHNERT R J,COLLINS L B. Characteristics,distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia[J]. Marine Geology, 2012, 303:115-136.
[5] ARP G, REIMER A, REITNER J. Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia[J]. Journal of Sedimentary Research, 2004, 73(2):105-127.
[6] 惠博,伊海生,时志强,等.青藏高原沱沱河盆地渐新世湖相叠层石:韵律纹层记录的古气候条件[J].地质通报, 2010, 29(1):62-69. HUI Bo, YI Haisheng, SHI Zhiqiang, et al. Oligocene lacustrine stromatolites in the Tuotuohe Basin, Qinghai-Tibet Plateau:Paleoclimate conditions recorded by the rhythmic laminations[J]. Geological Bulletin of China, 2010, 29(1):62-69.
[7] 曾德勇,时志强,张华,等.青藏高原五道梁地区中新世湖相叠层石特征、分类及古气候意义[J].矿物岩石, 2011, 31(3):111-119. ZENG Deyong, SHI Zhiqiang, ZHANG Hua, et al. Characters and classification of miocene lacustrine stromatolites in Wudaoliang area, northern Tibetan Plateau:Implications for paleoclimate[J]. Journal of Mineralogy and Petrology, 2011, 31(3):111-119.
[8] 王建功,张道伟,白亚东,等.柴西地区上油砂山组咸化湖沼沉积与微生物岩[J].地质学报, 2020, 94(11):3228-3248. WANG Jiangong, ZHANG Daowei, BAI Yadong, et al. Saline lacustrine palustrine sediments and microbialite in the Shangyoushashan Formation in the western Qaidam Basin[J]. Acta Geologica Sinica, 2020, 94(11):3228-3248.
[9] 曾令旗,伊海生,夏国清,等.柴达木盆地新生代湖相叠层石沉积序列及古环境意义[J].现代地质, 2017, 31(6):1251-1260. ZENG Lingqi, YI Haisheng, XIA Guoqing, et al. Sedimentary sequences and implications for paleoenvironment of Cenozoic lacustrine stromatolites in Qaidam Basin[J]. Geoscience, 2017, 31(6):1251-1260.
[10] 王建功,张道伟,易定红,等.柴西地区下干柴沟组上段湖相碳酸盐岩沉积特征及相模式[J].岩性油气藏, 2018, 30(4):1-13. WANG Jiangong, ZHANG Daowei, YI Dinghong, et al. Depositional characteristics and facies model of lacustrine carbonate rock in the upper member of lower Ganchaigou Formation in western Qaidam Basin[J]. Lithologic Reservoirs, 2018, 30(4):1-13.
[11] 王建功,杨少勇,李翔,等.柴达木盆地西部地区咸化湖泊微生物岩特征与差异分布[J].中国矿业大学学报, 2020, 49(6):1233-1249. WANG Jiangong, YANG Shaoyong, LI Xiang, et al. The characteristics and differential distribution of microbia carbonates of saline lacustrine in the western Qaidam Basin[J]. Journal of China University of Mining&Technology, 2020, 49(6):1233-1249.
[12] WANG Jiangong, ZHANG Daowei, YANG Shaoyong, et al. Sedimentary characteristics and genesis of the salt lake with the upper member of the Lower Ganchaigou formation from Yingxi Sag, Qaidam Basin[J]. Marine and Petroleum Geology, 2020, 111:135-155.
[13] 崔俊,毛建英,陈登钱,等.柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J].岩性油气藏, 2022, 34(2):45-53. CUI Jun, MAO Jianying, CHEN Dengqian, et al. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs, 2022, 34(2):45-53.
[14] 李翔,王建功,李飞,等.柴达木盆地西部始新统湖相微生物岩沉积特征:以西岔沟和梁东地区下干柴沟组为例[J].岩性油气藏, 2021, 33(3):63-73. LI Xiang, WANG Jiangong, LI Fei, et al. Sedimentary characteristics of Eocene lacustrine microbialites in western Qaidam Basin:A case study from Xiaganchaigou Formation in Xichagou and Liangdong areas[J]. Lithologic Reservoirs, 2021, 33(3):63-73.
[15] 王建功,张道伟,石亚军,等.柴达木盆地西部地区渐新世下干柴沟组上段盐湖沉积特征[J].吉林大学学报(地球科学版), 2020, 50(2):442-453. WANG Jiangong, ZHANG Daowei, SHI Yajun, et al. Salt lake depositional characteristics of upper member of lower Ganchaigou Formation, western Qaidam Basin[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2):442-453.
[16] 王建功,张永庶,孙秀建,等.柴西地区新生界湖相碳酸盐颗粒结构多样性及成因[J].中国矿业大学学报, 2021, 50(6):1057-1075. WANG Jiangong, ZHANG Yongshu, SUN Xiujian, et al. Structural diversity and genesis of Cenozoic lacustrine carbonate particles in western Qaidam Basin[J]. Journal of China University of Mining&Technology, 2021, 50(6):1057-1075.
[17] 王建功,张道伟,袁剑英,等.英西湖相碳酸盐岩储层成因与含油性分析[J].中国矿业大学学报, 2019, 48(1):110-120. WANG Jiangong,ZHANG Daowei,YUAN Jianying,et al. Characteristics of reservoir genesis and oil-gas accumulation in lacustrine carbonate in Yingxi area of Qaidam Basin[J]. Journal of China University of Mining&Technology, 2019, 48(1):110-120.
[18] KNOLL A H, BAULD J. The evolution of ecological tolerance in prokaryotes[J]. Transactions of the Royal Society of Edinburgh, 1989, 80:209-223.
[19] GERDES G, THOMAS K, NOFFKE N. Microbial signatures in peritidal siliciclastic sediments:A catalogue[J]. Sedimentology, 2020, 47(2):279-308.
[20] BURNE R V, MOORE L S. Microbialites:Organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3):241-254.
[21] BURNE R. Microatoll microbialites of lake clifton, WesternAustralia-the Morphological Analogs of Cryptozoon Proliferum Hall, the first formally-named stromatolite-reply[J]. Facies, 1995, 32:257-257.
[22] RIDING R. Microbial carbonates:The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology, 2000, 47(1):179-214.
[23] RIDING R. Microbialites stromatolites, and thrombolite[M]// REITNER J, THIEL V. Encyclopedia of Geobiology:Encyclopedia of earth science series. Heidelberg:Springer, 2011:635-654.
[24] GERDES G, CLAES M, DUNAJTSCHIK-PIEWAK K, et al. Contribution of microbial mats to sedimentary surface structures[J]. Facies, 1993, 29(1):61-74.
[25] NOFFKE N. Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (lower Arenigian, Montagne Noire, France)[J]. Sedimentary Geology, 2000, 136:207-215.
[26] NOFFKE N, GISELA G, THOMAS K. Benthic cyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic, evaporitic salty, and evaporitic carbonatic)[J]. Earth Science Reviews, 2003, 62:163-176.
[27] NEU T R. Biofilms and microbial mats[M]// KRUMBEIN W E, PATERSON D M, STAL L J. Biostabilization of sediments:Bibliotheks-informations system. Oldenburg:Der Universit, 1994:9-16.
[28] WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?In:Microbial extracellular polymeric substances[M]. Heidelberg:Springer, 1999:1-19.
[29] COHEN Y,ROSENBERG E. Microbial mats:Physiological ecology of benthic microbial communities[M]. Washington D C:American Society of Microbiologists, 1989:255-276.
[30] STOLZ J F. Structure of microbial mats and biofilms[M]// RIDING R, AWRAMIK S. Microbial Sediments. Heidelberg:Springer-Verlag, 2000:1-8.
[31] COSTERTON J W, CHENG K J, GEESEY G G, et al. Bacterial biofilms in nature and disease[J]. Annual Reviews of Microbiology, 1987, 41:435-464.
[32] FLEMMING H C, WUERTZ S. Bacteria and archaea on Earth and their abundance in biofilms[J]. Nature Reviews (Microbiology), 2019, 17:247-260.
[33] CHARACKLIS W G. Attached microbial growths:I. Attachment and growth[J]. Water Research, 1973, 7:1113-1127.
[34] GEESEY G G, JANG L K. Interactions between metal ions and capsular polymers[M]. New York:John Wiley, 1989:325-357.
[35] DADE W B, DAVIS J D, NICHOLS P D, et al. Effects of bacterial exopolymer adhesion on the entrainment of sand[J]. Geomicrobiology Journal, 1990, 8(1):1-16.
[36] CHARACKLIS W G, WILDERER P A. Structure and function of biofilms[R]. Berlin:Dahlem Workshop on Structure and Function of Biofilms, 1989.
[37] CHARAKLIS W G, MARSHALL K C. Biofilms[M]. Berlin:Wiley Intersci, 1990.
[38] GALLOIS A, BOSENCE D, BURGESS P M. Brackish to hypersaline facies in lacustrine carbonates:Purbeck limestone group, Upper Jurassic-Lower Cretaceous, Wessex Basin, Dorset, UK[J]. Facies, 2018, 64(2):1-39.
[39] DECHO A W. Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms[M]// RIDING R E, AWRAMIK S M. Microbial Sediments. Heidelberg:SpringerVerlag, 2000:9-15.
[40] MARSHALL K C. Bacterial adhesion in oligotrophic habitats[J]. Microbiological Sciences, 1985, 2(11):321-322.
[41] STARNAWSKI P, BATAILLON T, ETTEMA T J G, et al. Microbial community assembly and evolution in subseafloor sediment[J]. Proceedings of the National Academy of Sciences, 2017, 114(11):2940-2945.
[42] PARKES R J, WEBSTER G, CRAGG B A, et al. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time[J]. Nature, 2005, 436:390-394.
[43] MORONO Y, TERADA T, NISHIZAWA M, et al. Carbon and nitrogen assimilation in deep subseafloor microbial cells[J]. Proceedings of the National Academy of Sciences, 2011, 108(45):18295-18300.
[44] ORCUTT B N, LAROWE D E, BIDDLE J F, et al. Microbial activity in the marine deep biosphere:Progress and prospects[J]. Frontiers in Microbiology, 2013, 4(189):1-15.
[45] 戴永定,刘铁兵,沈继英.生物成矿作用与生物矿化作用[J].古生物学报, 1994, 33(5):575-592. DAI Yongding, LIU Tiebing, SHEN Jiying. Bio-ore formation and biomineralization[J]. Acta Palaeontologica Sinica, 1994, 33(5):575-592.
[46] SKINNER H C W, JAHREN A H. Treatise on geochemistry[M]. Amsterdam:Elsevier, 2003:117-184.
[47] 韩作振,陈吉涛,迟乃杰,等.微生物碳酸盐岩研究:回顾与展望[J].海洋地质与第四纪地质, 2009, 29(4):29-38. HAN Zuozhen, CHEN Jitao, CHI Naijie, et al. Microbial carbonates:A review and perspectives[J]. Marine Geology&Quaternary Geology, 2009, 29(4):29-38.
[48] 梅冥相.从生物矿化作用衍生出来的有机矿化作用:地球生物学框架下重要的研究主题[J].地质论评, 2012, 58(5):937-951. MEI Mingxiang. Organomineralization derived from the biomineralization:An important theme within the framework of geobiology[J]. Geological Review, 2012, 58(5):937-951.
[49] FOWLE D A, FEIN J B. Quantifying the effects of Bacillus subtilis cell walls on the precipitation of copper hydroxide from aqueous solution[J]. Geomicrobiology Journal, 2001, 18(1):77-91.
[50] GROTZINGER J P. Introduction to Precambrian reefs[G]// GELDSETZER H H J, JAMES N P, TEBBUTT G E. Reefs:Canada and adjacent areas. Calgary:Canadian Society of Petroleum Geologisits Memoir, 1989, 13:9-12.
[51] WEBB G E. Was phanerozoic reef history controlled by the distribution of non-enzymatically secreted reef carbonates (microbial carbonate and biologically induced cement)?[J]. Sedimentology, 1996, 43:947-971.
[52] DIAZ M R, EBERLI G P, BLACKWELDER P, et al. Microbially mediated organomineralization in the formation of ooids[J]. Geology, 2017, 45(9):771-774.
[53] MONTAGGIONI L F, CAMOIN G F. Stromatolites associated with coralgal communities in Holocene high-energy reefs[J]. Geology, 1993, 21:149-152.
[54] ZANKL H. The origin of high-Mg-calcite microbialites in cryptic habitats of Caribbean coral reefs-their dependence on light and turbulence[J]. Facies, 1993, 29:55-59.
[55] REITNER J. Modern cryptic microbial/metazoan facies from Lizard Island (Great Barrier Reef, Australia)-formation and concepts[J]. Facies, 1993, 29:3-39.
[56] CAMOIN G F, MONTAGGIONI L F. High energy coralgalstromatolite frameworks from Holocene reefs (Tahiti, French Polynesia)[J]. Sedimentology, 1994, 41:655-676.
[57] REITNER J, NEUWEILER F. GAUTRET P. Mud mounds:A polygenic spectrum of fine-grained carbonate buildups[J]. Facies, 1995, 32:1-70.
[58] MERZ M U. The biology of carbonate precipitation by cyanobacteria[J]. Facies, 1992, 26(1):81-101.
[59] MACINTYRE S. Vertical mixing in a shallow, eutrophic lake:Possible consequences for the light climate of phytoplankton[J]. Limnology and Oceanography. 1993, 38(4):798-817.
[60] JAMES N P. Reef environment[G]// SCHOLLE P A, BEBOUT D G,MOORE C H. Carbonate Depositional Environments. Oklahoma:American Association of Petroleum Geologists, 1983, 33:346-440.
[61] SHEEHAN P M. Reefs are not so different-they follow the evolutionary pattern of the level-bottom communities[J]. Geology, 1985, 13:46-49.
[62] TALENT J A. Organic reef-building:Episodes of extinction and symbiosis?[J]. Senck Lethaea, 1988, 69(3):315-368.
[63] KAUFFMAN E G, FAGERSTROM J A. The Phanerozoic evolution of reef diversity[M]//RICKLEFS R E, SCHLUTER D. Species diversity in ecological communities. Chicago:University of Chicago Press, 1993:315-329.
[64] FLÜGEL E,FLÜGEL-KAHLER E. Phanerozoic reef evolution:Basic questions and data base[J]. Facies, 1992, 26:167-278.
[65] TSIEN H H. Construction of reefs through geologic time with emphasis on the role of nonskeletal micro-organisms[J]. Acta Geologica Taiwanica, 1994, 31:1-30.
[66] WEBB G E. Late Mississippian thrombolite bioherms from the Pitkin Formation of northern Arkansas[J]. GSA Bulletin, 1987, 99:686-698.
[67] TURNER E C, NARBONNE G M, JAMES N P. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada[J]. Geology, 1993, 21:259-262.
[68] GERDES G, KRUMBEI W E. Biolaminated deposits[M]// BHATTACHARYA S, FRIEDMAN G M, NEUGEBAUER H J. Lecture notes in earth sciences. Berlin:Springer, 1987.
[69] GERDES G, KRUMBEIN W E, REINECK H E. Biolaminations-cological versus depositional dynamics[M]//EINSELE G, RICKEN W, SEILACHER A. Cycles and events in stratigraphy. Berlin:Springer, 1991:592-607.
[70] GERDES G, KLENKE T, NOFFKE N. Microbial signatures in peritidal siliciclastic sediments:A catalogue[J]. Sedimentology, 2000, 47:279-308.
[1] HUANG Xiangsheng, YAN Zhuoyu, ZHANG Dongfeng, HUANG Heting, LUO Chengfei. Characteristics of multi-phase thermal fluid activity and natural gas migration-accumulation of Cenozoic in No. 2 fault zone of Qiongdongnan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 67-76.
[2] DONG Rou, LI Kun, YIN Jihang, XUE Yuheng, JIANG Tao, XU Guosheng. Spatial-temporal differential evolution model and reservoir control effect of Cenozoic extensional and strike-slip superimposed faults in Bodong Sag [J]. Lithologic Reservoirs, 2024, 36(3): 106-116.
[3] NIE Lishang, MA Jinghui, TANG Xiaofei, YANG Zhi, ZHANG Wanjin, LI Hongrui. Meso-Cenozoic tectonic events and their petroleum geological significance in Zhangpenggou area,eastern Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(5): 81-91.
[4] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Fine characterization of Cenozoic faults and its geological implications in Zhanhua Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(4): 50-60.
[5] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 29-39.
[6] XUE Luo, SHI Zhongsheng, MA Lun, ZHAO Yanjun, YUE Shijun, HONG Liang, WANG Lei, LEI Ming. Hydrocarbon accumulation models and exploration potential of MesoCenozoic heavy oil in northern Melut Basin,South Sudan [J]. Lithologic Reservoirs, 2023, 35(3): 76-85.
[7] WANYAN Ze, LONG Guohui, YANG Wei, CHAI Jingchao, MA Xinmin, TANG Li, ZHAO Jian, LI Haipeng. Hydrocarbon accumulation and evolution characteristics of Paleogene in Yingxiongling area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(2): 94-102.
[8] HE Yong, QIU Xinwei, LEI Yongchang, XIE Shiwen, XIAO Zhangbo, LI Min. Tectonic evolution and hydrocarbon accumulation characteristics of Cenozoic in eastern Lufeng 13 subsag, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(1): 74-82.
[9] ZHANG Wenwen, HAN Changcheng, TIAN Jijun, ZHANG Zhiheng, ZHANG Nan, LI Zhengqiang. Sequence stratigraphy division and evolutionary features of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2021, 33(5): 45-58.
[10] LI Xiang, WANG Jiangong, LI Fei, WANG Yulin, WU Kunyu, LI Yafeng, LI Xianming. Sedimentary characteristics of Eocene lacustrine microbialites in western Qaidam Basin: A case study from Xiaganchaigou Formation in Xichagou and Liangdong areas [J]. Lithologic Reservoirs, 2021, 33(3): 63-73.
[11] NI Xianglong, WANG Jiangong, GUO Jiajia, DU Binshan, YI Dinghong, LONG Guohui, LI Zhiming, HUI Yuanyuan. Reservoir-controlling effect of basement faults and favorable exploration zones in southwestern Qaidam Basin [J]. Lithologic Reservoirs, 2019, 31(4): 32-41.
[12] CHEN Guowen, SHEN Ya, YUAN Yunchao, HAN Bing, LI Yanming, YANG Tai. Key techniques for seismic evaluation of lithologic reservoirs in southwestern Qaidam Basin [J]. Lithologic Reservoirs, 2018, 30(5): 74-81.
[13] WAN Chuanzhi, WANG Peng, XUE Jianqin, SU Xueying, ZHOU Gang, GOU Yingchun. Exploration potential of tight oil of the Paleogene and Neogene in western Qaidam Basin [J]. Lithologic Reservoirs, 2015, 27(3): 26-31.
[14] HU Baoqun, SUN Zhanxue, LI Mangen, BAI Lihong. Preliminary study on the theory of water phase transitions controlling the formation of oil and gas [J]. Lithologic Reservoirs, 2013, 25(5): 117-122.
[15] CHEN Qilin. Favorable condition and exploration prospecting of lithologic hydrocarbon reservoir in large-scale saline basin:Case study on the Eogene in the southwest of Qaidam Basin [J]. Lithologic Reservoirs, 2007, 19(1): 46-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: