Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (1): 96-107.doi: 10.12108/yxyqc.20230109
• PETROLEUM EXPLORATION • Previous Articles Next Articles
YANG Taozheng1,2, LIU Chenglin1,2, TIAN Jixian3, LI Pei1,2, RAN Yu1,2, FENG Dehao1,2, LI Guoxiong1,2, WU Yuping1,2
CLC Number:
[1] 何玉,周星,李少轩,等.渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J].岩性油气藏,2022,34 (3): 60-69. HE Yu,ZHOU Xing,LI Shaoxuan,et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin[J]. Lithologic Reservoirs, 2022,34 (3): 60-69. [2] TINGAY M R,HILLIS R R,SWARBRICK R E,et al. Origin of overpressure and pore-pressure prediction in the Baram province,Brunei[J]. AAPG Bulletin,2009,93 (1): 51-74. [3] HOTTMANN C E,JOHNSON R K. Estimation of formation pressures from log-derived shale properties[J]. Journal of Petroleum Technology,1965,17 (6): 717-722. [4] EBERHART-PHILLIPS D,HAN D,ZOBACK M D. Empirical relationships among seismic velocity,effective pressure,porosity, and clay content in sandstone[J]. Geophysics,1989,54 (1): 82-89. [5] BOWERS G L. Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction[J]. SPE Drilling & Completion,1995,10 (2): 89-95. [6] BOWERS G L. Determining high overpressure[J]. The Leading Edge,2002,21 (2): 174-177. [7] DUTTA N C. Geopressure prediction using seismic data: Current status and the road ahead[J]. Geophysics,2002,67 (6): 2012-2041. [8] ZHANG J. ROEGIERS J C. Double porosity finite element method for borehole modeling[J]. Rock Mechanics and Rock Engineering,2005,38 (3): 217-242. [9] ZHANG J. Pore pressure prediction from well logs: Methods, modifications,and new approaches[J]. Earth-Science Reviews, 2011,108 (1/2): 50-63. [10] EATON B A. The effect of overburden stress on geopressure prediction from well logs[J]. Journal of Petroleum Technology, 1972,24 (8): 929-934. [11] EATON B A. Graphical method predicts geopressures worldwide[J]. World Oil,1976,183: 100-104. [12] 田晓平,张汶,周连德,等.南堡凹陷二号断裂带古生界碳酸盐岩潜山岩溶模式[J].岩性油气藏,2021,33 (6): 93-101. TIAN Xiaoping,ZHANG Wen,ZHOU Liande,et al. Karst model of Paleozoic carbonate buried hill in No.2 fault zone of Nanpu Sag[J]. Lithologic Reservoirs,2021,33 (6): 93-101. [13] 李红. Dc指数随钻监测地层压力的应用分析[J].海洋石油, 2017,37 (3): 43-48. LI Hong. Application and analysis of monitoring formation pressure while drilling with Dc index[J]. Offshore Oil,2017,37 (3): 43-48. [14] FILLIPPONE W R. On the prediction of abnormally pressured sedimentary rocks from seismic data[C]. Houston: Offshore Technology Conference,1979. [15] FILLIPPONE W R. Estimation of formation parameters and the prediction of overpressures from seismic data[R]. SEG Technical Program Expanded Abstracts,1982: 502-503. [16] 刘震,张万选,张厚福,等.辽西凹陷北洼下第三系异常地层压力分析[J].石油学报,1993,14 (1): 14-24. LIU Zhen,ZHANG Wanxuan,ZHANG Houfu,et al. An analysis of abnormal formation pressure of Paleogene in the north sag of Liaoxi depression[J]. Acta Petrolei Sinica,1993,14 (1): 14-24. [17] GUTIERREZ M A,BRAUNSDOR N R,COUZENS B A. Calibration and ranking of pore-pressure prediction models[J]. The Leading Edge,2006,25 (12): 1516-1523. [18] 刘成林,平英奇,郭泽清,等.柴达木盆地西北古近系新近系异常高压形成机制分析[J].地学前缘,2019,26 (3): 211-219. LIU Chenglin,PING Yingqi,GUO Zeqing,et al. Genetic mechanism of overpressure in the Paleogene and Neogene in the northwestern Qaidam Basin[J]. Earth Science Frontiers,2019, 26 (3): 211-219. [19] 李培,刘成林,冯德浩,等.咸化湖盆地层超压特征及成因机制: 以柴达木盆地英西地区渐新统为例[J].中国矿业大学学报,2021,50 (5): 864-876. LI Pei,LIU Chenglin,FENG Dehao,et al. Overpressure characteristics and genetic mechanism of strata in salty lake basin: Taking Oligocene in Yingxi area of Qaidam Basin as an example[J]. Journal of China University of Mining and Technology,2021, 50 (5): 864-876. [20] 王志宏,郝翠果,李建明,等.川西前陆盆地超压分布及成因机制[J].岩性油气藏,2019,31 (6): 36-43. WANG Zhihong,HAO Cuiguo,LI Jianming,et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs,2019,31 (6): 36-43. [21] FREZZOTTI M L,TECCE F,CASAGLI A. Raman spectroscopy for fluid inclusion analysis[J]. Journal of Geochemical Exploration,2012,112 (1): 1-20. [22] OSBORNE M J,SWARBRICK R E. Mechanisms for generating overpressure in sedimentary basins: A reevaluation[J]. AAPG Bulletin,1997,81 (6): 1023-1041. [23] 侯志强,张书平,李军,等.西湖凹陷中部西斜坡地区超压成因机制[J].石油学报,2019,40 (9): 1059-1068. HOU Zhiqiang,ZHANG Shuping,LI Jun,et al. Genetic mechanism of overpressure in the west slope of the central Xihu Sag[J]. Acta Petrolei Sinica,2019,40 (9): 1059-1068. [24] 李军,唐勇,吴涛,等.准噶尔盆地玛湖凹陷砾岩大油区超压成因及其油气成藏效应[J]. 石油勘探与开发,2020,47 (4): 679-690. LI Jun,TANG Yong,WU Tao,et al. Overpressure origin and its effects on petroleum accumulation in the conglomerate oil province in Mahu Sag,Junggar Basin,NW China[J]. Petroleum Exploration and Development,2020,47 (4): 679-690. [25] 崔俊,毛建英,陈登钱,等.柴达木盆地西部地区古近系湖相碳酸盐岩储层特征[J].岩性油气藏,2022,34 (2): 45-53. CUI Jun,MAO Jianying,CHEN Dengqian,et al. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs,2022,34 (2): 45-53. [26] LIU Chenglin,LI Haohan,ZHANG Xu,et al. Geochemical characteristics of the Paleogene and Neogene saline lacustrine source rocks in the western Qaidam Basin,northwestern China[J]. Energy & Fuels,2016,30 (6): 4537-4549. [27] 陈启林. 大型咸化湖盆地层岩性油气藏有利条件与勘探方向: 以柴达木盆地柴西南古近纪为例[J].岩性油气藏,2007, 19 (1): 46-51. CHEN Qilin. Favorable conditions and exploration prospecting of lithologic hydrocarbon reservoirs in large-scale saline lake basin: Case study on the Eogene in the southwest of Qaidam Basin[J]. Lithologic Reservoirs,2007,19 (1): 46-51. [28] 易定红,王建功,石兰亭,等.柴达木盆地英西地区E32碳酸盐岩沉积演化特征[J].岩性油气藏,2019,31 (2): 46-55. YI Dinghong,WANG Jiangong,SHI Lanting,et al. Sedimentary evolution characteristics of E32 carbonate rocks in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs,2019,31 (2): 46-55. [29] 李翔,王建功,张平,等.柴达木盆地英西地区E32裂缝成因与油气地质意义[J].岩性油气藏,2018,30 (6): 45-54. LI Xiang,WANG Jiangong,ZHANG Ping,et al. Fracture genesis mechanism and geological significance of E32 in Yingxi area, Qaidam Basin[J]. Lithologic Reservoirs,2018,30 (6): 45-54. [30] 范昌育,王震亮,王爱国,等.柴达木盆地北缘鄂博梁构造带超压形成机制与高压气、水层成因[J]. 石油学报,2015,36 (6): 699-706. FAN Changyu,WANG Zhenliang,WANG Aiguo,et al. Mechanisms for overpressure generation and origin of overpressured gas and aquifer layers,Eboliang stucture belt,northern Qaidam Basin[J]. Acta Petrolei Sinica,2015,36 (6): 699-706. [31] 冯德浩,刘成林,田继先,等.柴达木盆地西北区地层剥蚀厚度恢复及对油气成藏的启示[J].石油实验地质,2022,44 (1): 188-198. FENG Dehao,LIU Chenglin,TIAN Jixian,et al. Erosion thickness recovery and its significance to hydrocarbon accumulation in northwestern Qaidam Basin[J]. Petroleum Geology & Experiment,2022,44 (1): 188-198. [32] 刘桃,刘景东.欠压实与流体膨胀成因超压的定量评价[J].石油学报,2018,39 (9): 971-979. LIU Tao,LIU Jingdong. Quantitative evaluation on overpressure generated from undercompaction and fluid expansion[J]. Acta Petrolei Sinica,2018,39 (9): 971-979. [33] 赵靖舟,李军,徐泽阳.沉积盆地超压成因研究进展[J].石油学报,2017,38 (9): 973-998. ZHAO Jingzhou,LI Jun,XU Zeyang. Advances in the origin of overpressure in sedimentary basins[J]. Acta Petrolei Sinica, 2017,38 (9): 973-998. [34] LI J,ZHAO J,HOU Z,et al. Origins of overpressure in the central Xihu depression of the East China Sea shelf basin[J]. AAPG Bulletin,2021,105 (8): 1627-1659. [35] APLIN A C,MACLEOD G,LARTER S R,et al. Combined use of confocal laser scanning microscopy and PVT simulation for estimating the composition and physical properties of petroleum in fluid inclusions[J]. Marine and Petroleum Geology, 1999,16 (2): 97-110. [36] 罗晓容.数值盆地模拟方法在地质研究中的应用[J].石油勘探与开发,2000,27 (2): 6-10. LUO Xiaorong. The application of numerical basin modeling in geological studies[J]. Petroleum Exploration and Development, 2000,27 (2): 6-10. [37] 罗晓容.前陆盆地异常流体压力: 地质作用及其增压效率[J]. 地质科学,2013,48 (1): 32-49. LUO Xiaorong. Overpressuring in foreland basins: Geological affects and their efficiency[J]. Chinese Journal of Geology,2013, 48 (1): 32-49. [38] 罗晓容. 构造应力超压机制的定量分析[J]. 地球物理学报, 2004,47 (6): 1086-1093. LUO Xiaorong. Quantitative analysis on overpressuring mechanism resulted from tectonic stress[J]. Chinese Journal of Geophysics,2004,47 (6): 1086-1093. [39] 王震亮,张立宽,施立志,等.塔里木盆地克拉2 气田异常高压的成因分析及其定量评价[J].地质论评,2005,51 (1): 55-63. WANG Zhenliang,ZHANG Likuan,SHI Lizhi,et al. Genesis analysis and quantitative evaluation on abnormal high fluid pressure in the Kela-2 gas field,Kuqu Depression,Tarim Basin[J]. Geological Review,2005,51 (1): 55-63. [40] WARBRICK R E,OSBORNE M J. Mechanisms that generate abnormal pressure: An overview[J]. Abnormal Pressure in Hydrocarbon Environments,1998,70: 13-43. [41] 范昌育,王震亮,张凤奇.库车坳陷克拉苏冲断带传递型超压的识别、计算及其主控因素[J].中国石油大学学报 (自然科学版), 2014,38 (3): 32-38. FAN Changyu,WANG Zhenliang,ZHANG Fengqi. Identification,calculation and main controlling factors of overpressure transferred by fault in Kelasu thrust belt of Kuqa depression[J]. Journal of China University of petroleum (Edition of Natural Science), 2014,38 (3): 32-38. [42] HUNT J M. Generation and migration of petroleum from abnormally pressured fluid compartments[J]. AAPG Bulletin,1990, 74 (1): 1-12. [43] LIU D H,XIAO X M,MI J K,et al. Determination of trapping pressure and temperature of petroleum inclusions using PVT simulation software-a case study of Lower Ordovician carbonates from the Lunnan Low Uplift,Tarim Basin[J]. Marine and Petroleum Geology,2003,20 (1): 29-43. [44] 郭泽清,刘卫红,钟建华,等.柴达木盆地西部新生界异常高压: 分布、成因及对油气运移的控制作用[J].地质科学,2005, 40 (3): 376-389. GUO Zeqing,LIU Weihong,ZHONG Jianhua,et al. Overpressure in the Cenozoic of western Qaidam Basin: Distribution, generation and effect on oil-gas migration[J]. Chinese Journal of Geology,2005,40 (3): 376-389. [45] FAN Changyu,WANG Zhenliang,WANG Aiguo,et al. Identification and calculation of transfer overpressure in the northern Qaidam Basin,northwest China[J]. AAPG Bulletin,2016,100 (1): 23-39. [46] 李丹鹭,马劲风,李琳,等.渤中凹陷异常压力储层地层压力预测方法研究[J].地球物理学进展,2022,37 (3): 1266-1273. LI Danlu,MA Jinfeng,LI Lin,et al. Prediction method of formation pressure in abnormal pressure reservoir in Bozhong Sag[J]. Progress in Geophysics,2022,37 (3): 1266-1273. [47] SAYERS C M,JOHNSON G M,DENYER G. Predrill porepressure prediction using seismic data[J]. Geophysics,2002,67 (4): 1286-1292. |
[1] | ZHANG Peijun, XIE Mingxian, LUO Min, ZHANG Liangjie, CHEN Renjin, ZHANG Wenqi, YUE Xingfu, LEI Ming. Analysis of deformation mechanism of ultra thick gypsum salt rock and its significance for oil and gas reservoir formation:A case study of the Jurassic gypsum salt layers in theAgayry region,eastern right bank of theAmu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 36-44. |
[2] | YUE Shijun, LIU Yingru, XIANG Yiwei, WANG Yulin, CHEN Fenjun, ZHENG Changlong, JING Ziyan, ZHANG Tingjing. A new method for calculating dynamic reserves and water influx of water-invaded gas reservoirs [J]. Lithologic Reservoirs, 2023, 35(5): 153-160. |
[3] | WANG Jiangong, LI Jiangtao, LI Xiang, GAO Yanfang, ZHANG Ping, SUN Xiujian, BAI Yadong, ZUO Mingtao. Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 1-17. |
[4] | ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 29-39. |
[5] | SIMA Liqiang, MA Jun, LIU Junfeng, YANG Huijie, WANG Liang, ZHAO Ning. Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(2): 1-10. |
[6] | WANYAN Ze, LONG Guohui, YANG Wei, CHAI Jingchao, MA Xinmin, TANG Li, ZHAO Jian, LI Haipeng. Hydrocarbon accumulation and evolution characteristics of Paleogene in Yingxiongling area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(2): 94-102. |
[7] | XIA Qingsong, LU Jiang, YANG Peng, ZHANG Kun, YANG Chaoyi, NIE Junjie, ZHU Yunfang, LI Lifang. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 132-144. |
[8] | LI Guoxin, SHI Yajun, ZHANG Yongshu, CHEN Yan, ZHANG Guoqing, LEI Tao. New progress and enlightenment of oil and gas exploration and geological understanding in Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(6): 1-18. |
[9] | CUI Jun, MAO Jianying, CHEN Dengqian, SHI Qi, LI Yanan, XIA Xiaomin. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 45-53. |
[10] | ZHAO Sisi, LI Jianming, LIU Jincheng, LI Jiyong, CUI Jun. Thermochemical sulfate reduction(TSR) and reservoir reformation of the upper Paleogene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 66-74. |
[11] | DU Jiangmin, LONG Pengyu, QIN Yingmin, ZHANG Tong, MA Hongyu, SHENG Jun. Characteristics and accumulation model of Oligocene E32 reservoir in Yingxi area,Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(5): 1-10. |
[12] | LI Xiang, WANG Jiangong, LI Fei, WANG Yulin, WU Kunyu, LI Yafeng, LI Xianming. Sedimentary characteristics of Eocene lacustrine microbialites in western Qaidam Basin: A case study from Xiaganchaigou Formation in Xichagou and Liangdong areas [J]. Lithologic Reservoirs, 2021, 33(3): 63-73. |
[13] | FENG Dehao, LIU Chenglin, TIAN Jixian, TAI Wanxue, LI Pei, ZENG Xu, LU Zhendong, GUO Xuanhao. Basin modeling and favorable play prediction of Neogene in Yiliping area, Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(3): 74-84. |
[14] | LONG Guohui, WANG Yanqing, ZHU Chao, XIA Zhiyuan, ZHAO Jian, TANG Pengcheng, FANG Yongsheng, LI Haipeng, ZHANG Na, LIU Jian. Hydrocarbon accumulation conditions and favorable exploration plays in Yingxiongling structural belt,Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(1): 145-160. |
[15] | TIAN Guangrong, WANG Jiangong, SUN Xiujian, LI Hongzhe, YANG Wei, BAI Yadong, PEI Mingli, ZHOU Fei, SI Dan. Hydrocarbon accumulation differences and main controlling factors of Jurassic petroleum system in Altun piedmont of Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(1): 131-144. |