Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (2): 1-10.doi: 10.12108/yxyqc.20230201

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin

SIMA Liqiang1,2, MA Jun1,2, LIU Junfeng3, YANG Huijie3, WANG Liang4, ZHAO Ning1,2   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500, China;
    3. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China;
    4. College of Energy Resources, Chengdu University of Technology, Chengdu 610059, China
  • Received:2022-05-24 Revised:2022-07-18 Online:2023-03-01 Published:2023-03-07

Abstract: Through low-field NMR experiments, the T2 spectra of the Quaternary mudstone biogas reservoirs in the Sebei area of Qaidam Basin were analyzed under saturated water state and gradient drying temperature state, and the NMR response characteristics of pore fluids were clarified to evaluate the effectiveness of pores. The results show that:(1) Based on the T2 spectrum under the saturated water state, the centrifugal bound water T2 spectrum was constructed by fitting the normal distribution function, the T2 cutoff values of movable fluid and capillary bound fluid were determined, the fluid types were divided, and the pore effectiveness evaluation was carried out. (2) The T2 spectral peaks of water-saturated rock samples in the study area are small on the left and large on the right, and the amplitude of the right peak is much larger than that of the left peak, accounting for more than 90% of the T2 spectral amplitude. With the increase of drying temperature, the amplitude of the T2 spectrum decreases and the left shift trend is obvious. The T2 spectrum shape of the bound water is approximately normal distribution, and the starting position basically coincides with the T2 spectrum under the saturated water state.(3) The T2 cutoff value(T2 C1) of movable fluid in the study area is 3.3 ms on average, and the average T2 cutoff value(T2 C2) of capillary bound fluid is 1.8 ms. The pore fluids include movable water, capillary bound water and clay bound water. The clay bound water T2 is less than T2 C2, and the capillary bound water T2 is larger than T2 C2 and less than T2 C1, and the movable fluid T2 is larger than T2 C1. The capillary bound water content is the highest, followed by the clay irreducible water, which account for 84.43%-95.06% of the total pore fluids, and the movable water content is low.(4) The effective pores of the reservoir in the study area account for 54.99% of the total pores and are mainly capillary-bound pores, and clay-bound pores are ineffective pores. The higher the clay content, the smaller the effective porosity.

Key words: biogas, mudstone-type reservoir, low-field NMR, T2 spectrum, pore availability, Quaternary, Sebei area, Qaidam Basin

CLC Number: 

  • TE122.2
[1] 张晓宝, 徐自远, 段毅, 等. 柴达木盆地三湖地区第四系生物气的形成途径与运聚方式[J]. 地质论评, 2003, 49(2):168-174. ZHANG Xiaobao, XU Ziyuan, DUAN Yi, et al. Metabolite pathway of the Quaternary biogenetic gases and their migration and accumulation in the Qaidam Basin[J]. Geological Review, 2003, 49(2):168-174.
[2] 管志强, 夏斌, 吕宝凤. 柴达木盆地三湖地区生物气成藏基本要素及其配置性[J]. 天然气地球科学, 2008, 19(2):165-170. GUAN Zhiqiang, XIA Bin, LYU Baofeng. Elementary factors and their configuration of biogas accumulation in eastern Qaidam Basin[J]. Natural Gas Geoscience, 2008, 19(2):165-170.
[3] 马力宁. 青海涩北第四系大型生物成因气气田主体开发技术研究[D]. 成都:西南石油学院, 2004. MA Lining. Research on the main development technology of the Quaternary large-scale biogenic gas field in Sebei, Qinghai[D]. Chengdu:Southwest Petroleum Institute, 2004.
[4] 唐相路, 姜振学, 邵泽宇, 等. 第四系泥岩型生物气储层特征及动态成藏过程[J]. 现代地质, 2022, 36(2):682-694. TANG Xianglu, JIANG Zhenxue, SHAO Zeyu, et al. Reservoir characteristics and dynamic accumulation process of the Quaternary mudstone biogas[J]. Modern Geology, 2022, 36(2):682-694.
[5] 赵佩, 李贤庆, 田兴旺, 等. 川南地区龙马溪组页岩气储层微孔隙结构特征[J]. 天然气地球科学, 2014, 25(6):947-956. ZHAO Pei, LI Xianqing, TIAN Xingwang, et al. Study on micropore structure characteristics of Longmaxi Formation shale gas reservoirs in the southern Sichuan Basin[J]. Natural Gas Geoscience, 2014, 25(6):947-956.
[6] 陈秀娟, 刘之的, 刘宇羲, 等. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1):22-31. CHEN Xiujuan, LIU Zhidi, LIU Yuxi, et al. Research into the pore structure of tight reservoirs:A review[J]. Geophysical and Geochemical Exploration, 2022, 46(1):22-31.
[7] 况晏, 司马立强, 瞿建华, 等.致密砂砾岩储层孔隙结构影响因素及定量评价:以玛湖凹陷玛131井区三叠系百口泉组为例[J]. 岩性油气藏, 2017, 29(4):91-100. KUANG Yan, SIMA Liqiang, QU Jianhua, et al. Influencing factors and quantitative evaluation for pore structure of tight glutenite reservoirs:A case of the Triassic Baikouquan Formation in Ma 131 well field, Mahu Sag[J]. Lithologic Reservoirs, 2017, 29(4):91-100.
[8] 龚小平, 唐洪明, 赵峰, 等. 四川盆地龙马溪组页岩储层孔隙结构的定量表征[J]. 岩性油气藏, 2016, 28(3):48-57. GONG Xiaoping, TANG Hongming, ZHAO Feng, et al. Quantitative characterization of pore structure in shale reservoirs of Longmaxi Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2016, 28(3):48-57.
[9] 刘永. 基于核磁共振流态分析的页岩微纳米孔隙类型划分方法[D]. 北京:中国地质大学(北京), 2018. LIU Yong. A study of shale pore size classification by using low field nuclear magnetic resonance fluid typing method[D]. Beijing:China University of Geosciences(Beijing), 2018.
[10] CHANG Dahai, VINEGAR H J, MORRISS C, et al. Effective porosity, producible fluid, and permeability in carbonates from NMR logging[J]. Log Analyst, 1997, 38(2):60-72.
[11] 黄杰, 杜玉洪, 王红梅, 等. 特低渗储层微观孔隙结构与可动流体赋存特征:以二连盆地阿尔凹陷腾一下段储层为例[J]. 岩性油气藏, 2020, 32(5):93-101. HUANG Jie, DU Yuhong, WANG Hongmei, et al. Characteristics of micro pore structure and movable fluid of extra-low permeability reservoirs:A case study of lower Et1 reservoir in A' er Sag, Erlian Basin[J]. Lithologic Reservoirs, 2020, 32(5):93-101.
[12] SUN Mengdi, YU Bingsong, HU Qinhong, et al. Pore connectivity and tracer migration of typical shales in south China[J]. Fuel, 2017, 203:32-46.
[13] MINH C C, JAIN V, GRIFFITHS R, et al. NMR T2 fluids substitution[R]. Reykjavik, Iceland:SPWLA 57th Annual Logging Symposium, 2016.
[14] STRALEY C, ROSSINI D, VINEGAR H J, et al. Core analysis by low-field NMR[J]. Log Analyst, 1997, 38(2):84-93.
[15] 孙军昌, 陈静平, 杨正明, 等. 页岩储层岩心核磁共振响应特征实验研究[J]. 科技导报, 2012, 30(14):25-30. SUN Junchang, CHEN Jingping, YANG Zhengming, et al. Experimental study of the NMR characteristics of shale reservoir rock[J]. Science & Technology Review, 2012, 30(14):25-30.
[16] LIU Yong, YAO Yanbin, LIU Dameng, et al. Shale pore size classification:An NMR fluid typing method[J]. Marine and Petroleum Geology, 2018, 96:591-601.
[17] 向雪冰, 司马立强, 王亮, 等. 页岩气储层孔隙流体划分及有效孔径计算:以四川盆地龙潭组为例[J]. 岩性油气藏, 2021, 33(4):137-146.XIANG Xuebing, SIMA Liqiang, WANG Liang, et al. Pore fluid division and effective pore size calculation of shale gas reservoirs:A case study of Longtan Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(4):137-146.
[18] 蒋裕强, 刘雄伟, 付永红, 等. 渝西地区海相页岩储层孔隙有效性评价[J]. 石油学报, 2019, 40(10):1233-1243. JIANG Yuqiang, LIU Xiongwei, FU Yonghong, et al. Evaluation of effective porosity in marine shale reservoirs, western Chongqing[J]. Acta Petrolei Sinica, 2019, 40(10):1233-1243.
[19] 朱明, 贾春明, 穆玉庆, 等. 基于正态分布拟合的致密砂砾岩储层核磁共振测井可变T2截止值计算方法[J]. 石油地球物理勘探, 2021, 56(3):612-621. ZHU Ming, JIA Chunming, MU Yuqing, et al. A method of predicting T2 cutoffs from NMR logging data of tight glutenite reservoirs based on normal distribution simulation[J]. Petroleum Geophysical Exploration, 2021, 56(3):612-621.
[20] 吴丰, 司马立强, 杨洪明, 等. 柴西地区复杂岩性核磁共振T2 截止值研究[J]. 测井技术, 2014, 38(2):144-149. WU Feng, SIMA Liqiang, YANG Hongming, et al. Research on NMR T 2 cutoff of complex lithology in the west Qaidam Basin[J]. Logging Technology, 2014, 38(2):144-149.
[21] 朱筱敏, 康安, 胡宗全, 等. 柴达木盆地第四系层序地层特征与油气评价[J]. 石油勘探与开发, 2002, 29(1):56-60. ZHU Xiaomin, KANG An, HU Zongquan, et al. Quaternary sequence stratigraphy and hydrocarbon evaluation in Qaidam Basin[J]. Petroleum Exploration and Development, 2002, 29(1):56-60.
[22] 马翔宇. 多层气藏试井分析[D]. 北京:中国地质大学(北京), 2012. MA Xiangyu. Well test analysis of multi-layered gas reservoir[D]. Beijing:China University of Geosciences(Beijing), 2012.
[23] 胡鹏轩. 涩北一号气田水侵规律及开发对策研究[D]. 成都:西南石油大学, 2019. HU Pengxuan. Water invasion rule and development strategy of Sebei-1 gas field[D]. Chengdu:Southwest Petroleum University, 2019.
[24] TESTAMANTI M N, REZAEE R. Determination of NMR T2 cut-off for clay bound water in shales:A case study of Carynginia Formation, Perth Basin, Western Australia[J]. Journal of Petroleum Science and Engineering, 2017, 149:497-503.
[25] 时建超, 屈雪峰, 雷启鸿, 等. 致密油储层可动流体分布特征及主控因素分析:以鄂尔多斯盆地长7储层为例[J]. 天然气地球科学, 2016, 27(5):827-834. SHI Jianchao, QU Xuefeng, LEI Qihong, et al. Distribution characteristics and controlling factors of movable fluid in tight oil reservoirs:A case study of Chang 7 reservoir in Ordos Basin[J]. Natural Gas Geoscience, 2016, 27(5):827-834.
[26] YUAN Yujie, REZAEE R, VERRALL M, et al. Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption-Science Direct[J]. International Journal of Coal Geology, 2018, 194:11-21.
[27] 李闽, 王浩, 陈猛. 致密砂岩储层可动流体分布及影响因素研究:以吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2018, 30(1):140-149. LI Min, WANG Hao, CHEN Meng. Distribution characteristics and influencing factors of movable fluid in tight sandstone reservoirs:A case study of Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2018, 30(1):140-149.
[28] 冒海军, 郭印同, 王光进, 等. 黏土矿物组构对水化作用影响评价[J]. 岩土力学, 2010, 31(9):2723-2728. MAO Haijun, GUO Yintong, WANG Guangjin, et al. Evaluation of impact of clay mineral fabrics on hydration process[J]. Rock and Soil Mechanics, 2010, 31(9):2723-2728.
[29] 毛惠, 邱正松, 黄维安, 等. 温度和压力对黏土矿物水化膨胀特性的影响[J].石油钻探技术, 2013, 41(6):56-61. MAO Hui, QIU Zhengsong, HUANG Weian, et al. The effects of temperature and pressure on the hydration swelling characterietics of clay mineral[J]. Petroleum Drilling Technology, 2013, 41(6):56-61.
[30] 余致理, 郭高峰, 余恒, 等. 水化作用下页岩微观孔隙结构伤害特征[J]. 西安石油大学学报(自然科学版), 2022, 37(1):44-50. YU Zhili, GUO Gaofeng, YU Heng, et al. Damage of hydration effect to micropore structure of shale[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2022, 37(1):44-50.
[1] MENG Qinghao, ZHANG Changmin, ZHANG Xianghui, ZHU Rui, XIANG Jianbo. Morphology,distribution and main controlling factors of modern distributive fluvial system in Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(4): 44-56.
[2] YUE Shijun, LIU Yingru, XIANG Yiwei, WANG Yulin, CHEN Fenjun, ZHENG Changlong, JING Ziyan, ZHANG Tingjing. A new method for calculating dynamic reserves and water influx of water-invaded gas reservoirs [J]. Lithologic Reservoirs, 2023, 35(5): 153-160.
[3] WANG Jiangong, LI Jiangtao, LI Xiang, GAO Yanfang, ZHANG Ping, SUN Xiujian, BAI Yadong, ZUO Mingtao. Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 1-17.
[4] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 29-39.
[5] WANYAN Ze, LONG Guohui, YANG Wei, CHAI Jingchao, MA Xinmin, TANG Li, ZHAO Jian, LI Haipeng. Hydrocarbon accumulation and evolution characteristics of Paleogene in Yingxiongling area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(2): 94-102.
[6] YANG Taozheng, LIU Chenglin, TIAN Jixian, LI Pei, RAN Yu, FENG Dehao, LI Guoxiong, WU Yuping. Prediction and genesis of formation pressure in Dafengshan uplift, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 96-107.
[7] XIA Qingsong, LU Jiang, YANG Peng, ZHANG Kun, YANG Chaoyi, NIE Junjie, ZHU Yunfang, LI Lifang. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 132-144.
[8] LI Guoxin, SHI Yajun, ZHANG Yongshu, CHEN Yan, ZHANG Guoqing, LEI Tao. New progress and enlightenment of oil and gas exploration and geological understanding in Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(6): 1-18.
[9] CUI Jun, MAO Jianying, CHEN Dengqian, SHI Qi, LI Yanan, XIA Xiaomin. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 45-53.
[10] ZHAO Sisi, LI Jianming, LIU Jincheng, LI Jiyong, CUI Jun. Thermochemical sulfate reduction(TSR) and reservoir reformation of the upper Paleogene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 66-74.
[11] DU Jiangmin, LONG Pengyu, QIN Yingmin, ZHANG Tong, MA Hongyu, SHENG Jun. Characteristics and accumulation model of Oligocene E32 reservoir in Yingxi area,Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(5): 1-10.
[12] LI Xiang, WANG Jiangong, LI Fei, WANG Yulin, WU Kunyu, LI Yafeng, LI Xianming. Sedimentary characteristics of Eocene lacustrine microbialites in western Qaidam Basin: A case study from Xiaganchaigou Formation in Xichagou and Liangdong areas [J]. Lithologic Reservoirs, 2021, 33(3): 63-73.
[13] FENG Dehao, LIU Chenglin, TIAN Jixian, TAI Wanxue, LI Pei, ZENG Xu, LU Zhendong, GUO Xuanhao. Basin modeling and favorable play prediction of Neogene in Yiliping area, Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(3): 74-84.
[14] LONG Guohui, WANG Yanqing, ZHU Chao, XIA Zhiyuan, ZHAO Jian, TANG Pengcheng, FANG Yongsheng, LI Haipeng, ZHANG Na, LIU Jian. Hydrocarbon accumulation conditions and favorable exploration plays in Yingxiongling structural belt,Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(1): 145-160.
[15] TIAN Guangrong, WANG Jiangong, SUN Xiujian, LI Hongzhe, YANG Wei, BAI Yadong, PEI Mingli, ZHOU Fei, SI Dan. Hydrocarbon accumulation differences and main controlling factors of Jurassic petroleum system in Altun piedmont of Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(1): 131-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: