Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (5): 153-160.doi: 10.12108/yxyqc.20230515

• PETROLEUM ENGINEERING AND OIL & GAS FIELD DEVELOPMENT • Previous Articles     Next Articles

A new method for calculating dynamic reserves and water influx of water-invaded gas reservoirs

YUE Shijun1, LIU Yingru1, XIANG Yiwei2, WANG Yulin1, CHEN Fenjun2, ZHENG Changlong1, JING Ziyan1, ZHANG Tingjing1   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development-Northwest, Lanzhou 730020, China;
    2. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736200, Gansu, China
  • Received:2023-02-20 Revised:2023-03-27 Online:2023-09-01 Published:2023-09-28

Abstract: Taking a homogeneous radial gas reservoir with edge water as an example,based on the material balance theory of water drive gas reservoirs,the relationship between the average water saturation of the formation and the exit-end water saturation was derived. Water storage volume coefficient was introduced to establish the relationhsips of average water saturation with dynamic reserves and water influx of gas reservoirs,so as to calculate the dynamic reserves and water influx of gas reservoirs. This method was applied to the sixth layer of Quaternary Sebei Formation in Tainan gas field of Qaidam Basin,the dynamic geological reserves were verified using the apparent geological reserves method,and the calculation results of water influx were verified using numerical simulation method. The results show that:(1)In homogeneous radial gas reservoir with edge water,the average water saturation of the formation is linearly positively correlated with the exit-end water saturation.(2)When calculating the dynamic reserves of gas reservoirs through average saturation,the data that tends to stabilize in the middle and later stages of development should be selected. At this time,the pressure drop of the formation affects the reservoir boundary,which can reflect the real dynamic reserves of the entire work area. However,the results calculated by early data are relatively small.(3)The dynamic geological reserves of the sixth layer of Quaternary Sebei Formation in Tainan gas field of Qaidam Basin calculated by average saturation are 8.1×108 m3,with an error of 1% compared with the dynamic geological reserves calculated by apparent geological reserves method. The error between the water influx calculated by average saturation and the water influx calculated by numerical simulation method is about 10%.

Key words: water-invaded gas reservoirs, dynamic reserves, material balance, fractional flow theory, average water saturation, water influx, radial formation, Tainan gas field, Qaidam Basin

CLC Number: 

  • TE341
[1] 李士伦.天然气工程[M].北京:石油工业出版社, 2008. LI Shilun. Gas reservoir engineering[M]. Beijing:Petroleum Industry Press, 2008.
[2] 李传亮.油藏工程原理[M].北京:石油工业出版社, 2011. LI Chuanliang. Textbook for higher education principles of reservoir engineering 2nd edition[M]. Beijing:Petroleum Industry Press, 2011.
[3] 李冬梅,李会会,朱苏阳,等.断溶体油气藏流动物质平衡方法[J].岩性油气藏, 2022, 34(1):154-162. LI Dongmei, LI Huihui, ZHU Suyang, et al. Modified flowing material balance method for fault-karst reservoirs[J]. Lithologic Reservoirs, 2022, 34(1):154-162.
[4] 邓绍强,黄全华,肖莉,等.低渗透气藏储量早期预测[J].西南石油学院学报, 2005, 27(6):33-36. DENG Shaoqiang, HUANG Quanhua, XIAO Li, et al. Early prediction of reserves of low permeability gas reservoir[J]. Journal of Southwest Petroleum University, 2005, 27(6):33-36.
[5] 李昌绵,李爽,柳琳,等.苏里格气田苏S区块高含水气藏气水识别及开发对策研究[J].非常规油气, 2022, 9(3):64-71. LI Changmian, LI Shuang, LIU Lin, et al. Study on gas-water identification and development strategyof high water-cut gas reservoir in Su S block of Sulige gas field[J]. Unconventional Oil & Gas, 2022, 9(3):64-71.
[6] 邓成刚,李江涛,柴小颖,等.涩北气田弱水驱气藏水侵早期识别方法[J].岩性油气藏, 2020, 32(1):128-134. DENG Chenggang, LI Jiangtao, CHAI Xiaoying, et al. Early identification methods of water invasion in weak water drive gas reservoirs in Sebei gas field, Qaidam Basin[J]. Lithologic Reservoirs, 2020, 32(1):128-134.
[7] 王怒涛,唐刚,任洪伟.水驱气藏水侵量及水体参数计算最优化方法[J].天然气工业, 2005, 25(5):75-77. WANG Nutao, TANG Gang, REN Hongwei. Optimized calculating method of aquifer influx and parameters for water-drive gas reservoirs[J]. Natural Gas Industry, 2005, 25(5):75-77.
[8] 闫正和,石军太,秦峰,等.水驱气藏动态储量和水侵量计算新方法[J].中国海上油气, 2021, 33(1):93-102. YAN Zhenghe, SHI Juntai, QIN Feng, et al. A new method for calculating dynamic reserves and water influx of water drive gas reservoirs[J]. China Offshore Oil and Gas, 2021, 33(1):93-102.
[9] 桑頔.普光气田水侵过程中气水互驱两相渗流机理研究[D].成都:西南石油大学, 2018. SANG Di. Research of two-phase flow mechanism of gas water interaction in Puguang gas field during the water invasion[D]. Chengdu:Southwest Petroleum University, 2018.
[10] 熊伟,朱志强,高树生,等.考虑封闭气的水驱气藏物质平衡方程[J].石油钻探技术, 2012, 40(2):93-97. XIONG Wei, ZHU Zhiqiang, GAO Shusheng, et al. Material balance equation for water-driven gas reservoirs considering closed gas[J]. Petroleum Drilling Technology, 2012, 40(2):93-97.
[11] 鹿克峰.水驱气藏水侵预测经典经验关系式lnω=BlnR的适用性分析[J].中国海上油气, 2016, 28(6):40-45. LU Kefeng. Analysis of the applicability of the classical empirical relation lnω=BlnR for water intrusion prediction in waterdriven gas reservoirs[J]. China Offshore Oil and Gas, 2016, 28(6):40-45.
[12] TORKJELL S, OLA E, MARTIN L. Gravimetric monitoring of gas-reservoir water influx:A combined flow and gravity-modeling approach[J]. Geophysics, 2008, 73(6):123-131.
[13] KRUMMEL A T, DATTA S S, MUNSTER S, et al. Visualizing multiphase flow and trapped fluid configurations in a model Three-dimensional porous medium[J]. Aiche Journal, 2013, 59(3):1022-1029.
[14] JIAO Yuwei, XIA Jing, LIU Pengcheng, et al. New material balance analysis methond for abnormally high-pressured gas-hydrocarbon reservoir with water influx[J]. International Journal of Hydrogen Energy, 2017, 42(29):18718-18727.
[15] FENG Qing, JIA Han, HUANG Zijun, et al. Calculation model for water influx and controlled reserves for CBM wells with high water field[J]. Petroleum Research, 2018, 3(3):288-292.
[16] FENG Xi, ZHONG Bing, YANG Xuefeng, et al. Effective water influx control in gas reservoir development:Problems and countermeasures[J]. Natural Gas Industry, 2015, 2(2/3):240-246.
[17] VASCO D W,HENK K,JALAL K,et al. Seismic imaging of reservoir flow properties:Resolving water influx and reservoir permeability[J]. Geophysics, 2008, 73(1):1-13.
[18] MACHADO M V B. Numerical laplace inversion methods:Application to the calculation of the water influx from aquifers connected to petroleum reservoirs[J]. Petroleum Science and Technology, 2012, 30(1):74-88.
[19] 张国东,李敏,柏冬岭.高压超高压天然气偏差系数实用计算模型:LXF高压高精度天然气偏差系数解析模型的修正[J].天然气工业, 2005, 25(8):79-80. ZHANG Guodong, LI Min, BAI Dongling. Practical calculating model of gas deviation factor with high and super:High pressure[J]. Natural Gas Industry, 2005, 25(8):79-80.
[20] 刘启国,刘振平,王宏玉,等.利用生产数据计算气井控制储量和水侵量[J].石油钻探技术, 2015, 43(1):96-99. LIU Qiguo, LIU Zhenping, WANG Hongyu, et al. A method to calculate gas well controlled reservesand water influx from production data[J]. Petroleum Drilling Techniques, 2015, 43(1):96-99.
[21] 鹿克峰,马恋,刘彬彬,等.水驱气藏早期直线外推动储量探讨[J].岩性油气藏, 2019, 31(1):153-158. LU Kefeng, MA Lian, LIU Binbin, et al. Dynamic reserves calculated by linear relationship in the early development of water-drive gas reservoir[J]. Lithologic Reservoirs, 2019, 31(1):153-158.
[22] 张宏友,邓琪,牟春荣,等.水驱砂岩油藏理论含水上升率计算新方法:对分流量方程法的校正[J].中国海上油气, 2015, 27(3):79-82. ZHANG Hongyou, DENG Qi, MOU Chunrong, et al. A New method for computing the increased rate of water cut for waterflooding sandstone reservoirs:A correction of fractional flow equation method[J]. China Offshore Oil and Gas, 2015, 27(3):79-82.
[23] 罗沛,杨云,柴小颖,等.东坪基岩气藏气水相对渗透率的确定方法[J].西南石油大学学报(自然科学版), 2021, 43(2):93-100. LUO Pei, YANG Yun, CHAI Xiaoying, et al. Determination of gas-water relative permeability of Dongping bedrock gas reservoir[J]. Journal of Southwest Petroleum University (Natural Science Edition), 2021, 43(2):93-100.
[24] 李传亮,王凤兰,杜庆龙,等.砂岩油藏特高含水期的水驱特征[J].岩性油气藏, 2021, 33(5):163-171. LI Chuanliang, WANG Fenglan, DU Qinglong, et al. Water displacement rules of sandstone reservoirsat extra-high water-cut stage[J]. Lithologic Reservoirs, 2021, 33(5):163-171.
[25] 杨玉斌,肖文联,韩建,等.丹凤场气田致密砂岩气水渗流特征及影响因素[J].油气藏评价与开发, 2022, 12(2):356-364. YANG Yubin, XIAO Wenlian, HAN Jian, et al. Gas-water flow characteristics and influencing factors of tight sandstone in Danfengchang gas field[J]. Petroleum Reservoir Evaluation and Development, 2022, 12(2):356-364.
[26] 谭先红,梁斌,王帅,等.一种低渗储层凝析气藏气井产能评价方法研究[J].油气藏评价与开发, 2021, 11(5):724-729. TAN Xianhong, LIANG Bin, WANG Shuai, et al. A productivity evaluation method of gas wells in condensate gas reservoirs with low permeability[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(5):724-729.
[27] 胡伟,杨胜来,翟羽佳,等.油-水相对渗透率曲线优化校正新方法[J].石油学报, 2015, 36(7):871-875. HU Wei, YANG Shenglai, ZHAI Yujia, et al. A new optimization and correction method of oil-waterphase relative permeability curve[J]. Acta Petrolei Sinica, 2015, 36(7):871-875.
[28] 何贤,闫建平,王敏,等.低渗透砂岩孔隙结构与采油产能关系:以东营凹陷南坡F154区块为例[J].岩性油气藏, 2022, 34(1):106-117. HE Xian, YAN Jianping, WANG Min, et al. Relationship between pore structure and oil production capacity of low permeability sandstone:A case study of block F154 in south slope of Dongying Sag[J]. Lithologic Reservoirs, 2022, 34(1):106-117.
[29] 尹洪军,付莹,王美楠.基于流管法低渗透油藏开发数值模拟研究[J].石油化工高等学校学报, 2015, 28(3):61-65. YIN Hongjun, FU Ying, WANG Meinan. Numerical simulation research for low-permeability reservoirs based on stream-tube model[J]. Journal of Petrochemical Universities, 2015, 28(3):61-65.
[1] QIN Zhengshan, HE Yongming, DING Yangyang, LI Baihong, SUN Shuangshuang. Water invasion performance and main controlling factors for edge-water gas reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 178-188.
[2] WANG Jiangong, LI Jiangtao, LI Xiang, GAO Yanfang, ZHANG Ping, SUN Xiujian, BAI Yadong, ZUO Mingtao. Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 1-17.
[3] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 29-39.
[4] SIMA Liqiang, MA Jun, LIU Junfeng, YANG Huijie, WANG Liang, ZHAO Ning. Evaluation of pore effectiveness of Quaternary mudstone biogas reservoirs in Sebei area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(2): 1-10.
[5] WANYAN Ze, LONG Guohui, YANG Wei, CHAI Jingchao, MA Xinmin, TANG Li, ZHAO Jian, LI Haipeng. Hydrocarbon accumulation and evolution characteristics of Paleogene in Yingxiongling area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(2): 94-102.
[6] YANG Taozheng, LIU Chenglin, TIAN Jixian, LI Pei, RAN Yu, FENG Dehao, LI Guoxiong, WU Yuping. Prediction and genesis of formation pressure in Dafengshan uplift, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 96-107.
[7] XIA Qingsong, LU Jiang, YANG Peng, ZHANG Kun, YANG Chaoyi, NIE Junjie, ZHU Yunfang, LI Lifang. Microscopic pore structure characteristics of the upper member of Oligocene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(1): 132-144.
[8] LI Guoxin, SHI Yajun, ZHANG Yongshu, CHEN Yan, ZHANG Guoqing, LEI Tao. New progress and enlightenment of oil and gas exploration and geological understanding in Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(6): 1-18.
[9] CUI Jun, MAO Jianying, CHEN Dengqian, SHI Qi, LI Yanan, XIA Xiaomin. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 45-53.
[10] ZHAO Sisi, LI Jianming, LIU Jincheng, LI Jiyong, CUI Jun. Thermochemical sulfate reduction(TSR) and reservoir reformation of the upper Paleogene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 66-74.
[11] LI Dongmei, LI Huihui, ZHU Suyang, LI Tao. Modified flowing material balance method for fault-karst reservoirs [J]. Lithologic Reservoirs, 2022, 34(1): 154-162.
[12] DU Jiangmin, LONG Pengyu, QIN Yingmin, ZHANG Tong, MA Hongyu, SHENG Jun. Characteristics and accumulation model of Oligocene E32 reservoir in Yingxi area,Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(5): 1-10.
[13] LI Xiang, WANG Jiangong, LI Fei, WANG Yulin, WU Kunyu, LI Yafeng, LI Xianming. Sedimentary characteristics of Eocene lacustrine microbialites in western Qaidam Basin: A case study from Xiaganchaigou Formation in Xichagou and Liangdong areas [J]. Lithologic Reservoirs, 2021, 33(3): 63-73.
[14] FENG Dehao, LIU Chenglin, TIAN Jixian, TAI Wanxue, LI Pei, ZENG Xu, LU Zhendong, GUO Xuanhao. Basin modeling and favorable play prediction of Neogene in Yiliping area, Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(3): 74-84.
[15] LONG Guohui, WANG Yanqing, ZHU Chao, XIA Zhiyuan, ZHAO Jian, TANG Pengcheng, FANG Yongsheng, LI Haipeng, ZHANG Na, LIU Jian. Hydrocarbon accumulation conditions and favorable exploration plays in Yingxiongling structural belt,Qaidam Basin [J]. Lithologic Reservoirs, 2021, 33(1): 145-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: