Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (1): 71-80.doi: 10.3969/j.issn.1673-8926.2017.01.009

Previous Articles     Next Articles

Reservoir characteristics and pore evolution of the second member of the Lower Cretaceous Bayingebi Formation in Chagan Depression

WU-CHEN Bingjie1,2, ZHU Xiaomin1,2, WEI Wei1,2, JIANG Feihu3, TAN Mingxuan1,2, PAN Rong1,2   

  1. 1. College of Geosciences, China University of Petroleum, Beijing 102249, China;
    2. State Key Laboratory of Petroleum Resource and Prospecting, China University of Petroleum, Beijing 102249, China;
    3. Research Institute of Exploration and Development, Sinopec Zhongyuan Oilfield Company, Puyang 457001, Henan, China
  • Received:2016-08-10 Revised:2016-10-15 Online:2017-01-21 Published:2017-01-21

Abstract: In order to study the characteristics of clastic reservoir and the effects of diagenesis on porosity of the second member of the Lower Cretaceous Bayingebi Formation(K1 b2)in Chagan Depression,a pore evolution model was established based on the data of core,thin section observation,X-ray diffraction and SEM. The reservoir rock of K1 b2 is mainly composed of feldspar lithic sandstone. The reservoir properties are poor,with ultralow porosity and ultra-low permeability. The porosity ranges from 0.17% to 15.32% with an average of 5.7%, and the permeability ranges from 0.003 7 mD to 162.300 0 mD,with an average of 3.4 mD. Intergranular dissolved pores are the main reservoir space. The reservoir of K1 b2 underwent mainly mechanical compaction,early carbonate cementation,carbonate dissolution and late carbonate cementation. Dissolution of carbonate cements, feldspar and rock debris created a secondary pore zone among 2 100-2 800 m,which improves the reservoir properties. The K1 b2 reservoir is mainly at the middle diagenetic A2 stage. The results show that the original porosity of K1 b2 is 30.5% in the Wuliji tectonic zone,compaction reduced the porosity of 19.8%,while the cementation reduced porosity of 9.7%,and the dissolution increased porosity by 3.7%,which improves the reservoir properties( the current porosity is approximately 4.8%). This result matches well with actual porosity,which has a contribution to cognize pore evolution process and predict high quality reservoirs.

CLC Number: 

  • TE343
[1] 李聪,王德发,蒋飞虎,等. 查干凹陷巴音戈壁组沉积演化及 有利砂体分布预测.中国地质,2013,40(4):1169-1179. LI C,WANG D F,JIANG F H,et al. The sedimentation evolution and favorable sand body distribution prognosis in Chagan Sag of Bayin Gobi Formation. Geology in China,2013,40(4): 1169-1179.
[2] 陈建平,何忠华,魏志彬,等. 银额盆地查干凹陷基本生油条 件研究. 石油勘探与开发,2001,28(6):23-27. CHEN J P,HE Z H,WEI Z B,et al. A study on basic oil generation conditions of Chagan Depression,Yin-E Basin. Peroleum Exploration and Development,2001,28(6):23-27.
[3] 徐会永,蒋有录,张立强,等. 查干凹陷构造样式及其构造演 化.油气地质与采收率,2008,15(4):13-15. XU Y H,JIANG Y L,ZHANG L Q,et al. Structural styles and evolution characteristic of Chagan Depression. Petroleum Geology and Recovery Efficiency,2008,15(4):13-15.
[4] 吴少波,白玉宝,杨友运. 内蒙古银根盆地下白垩统沉积相. 古地理学报,2003,5(1):36-43. WU S B,BAI Y B,YANG Y Y. Sedimentary facies of the Lower Cretacaceous of Yingen Basin in Inner Mongolia. Journal of Paleogeography,2003,5(1):36-43.
[5] 李仁甫,陈清棠,范迎风,等. 内蒙古查干凹陷下白垩统层序 地层格架与沉积体系分布. 现代地质,2009,23(5):783-790. LI R F,CHEN Q T,FAN Y F,et al. Sequence stratigraphic framework and sedimentary facies distribution of the Lower Cretaceous in Chagan Depression,Inner Mongolia. Geoscience, 2009,23(5):783-790.
[6] 杨琦. 查干凹陷下白垩统碎屑岩储集层特征研究. 西北地质, 2000,33(3):13-17. YANG Q. On features of Lower Cretaceous clastic reservoir in Chagan Sag. Northwestern Geology,2000,33(3):13-17.
[7] 岳伏生,马龙,李天顺. 查干凹陷下白垩统碎屑岩储层成岩演 化与油气成藏.沉积学报,2002,20(4):644-649. YUE F S,MA L,LI T S. Diagenetic evolution and oil gas accumulation from clastic rock of Lower Cretaceous in Chagan Depression. Acta Sedimentologica Sinica,2002,20(4):644-649.
[8] 魏巍,朱筱敏,国殿斌,等. 银—额盆地查干凹陷下白垩统碎 屑岩储层成岩作用及其对储层物性的影响. 天然气地球科 学,2014,25(12):1933-1942. WEI W,ZHU X M,GUO D B,et al. Diagenesis and its controls on reservoir quality of Lower Cretaceous clastic rock reservoir in Chagan Depression of Yin-E Basin. Natural Gas Geoscience, 2014,25(12):1933-1942.
[9] 王生朗,马维民,竺知新,等. 银根—额济纳旗盆地查干凹陷 构造-沉积格架与油气勘探方向. 石油实验地质,2002,24 (4):296-300. WANG S L,MAW M,ZHU Z X,et al. Structural-depositional framework and hydrocarbon exploration prospects in the Chagan Depression,the Yingen-Ejinaqi Basin. Petroleum Geology & Experiment,2002,24(4):296-300.
[10] 卫平生,张虎权,陈启林. 银根—额济纳旗盆地油气地质特征 及勘探前景.北京:石油工业出版社,2006:1-345. WEI P S,ZHANG H Q,CHEN Q L. The oil and gas geological charactoristics and exploration prospect in Yingen- Ejinaqi Basin. Beijing:Petroleum Industry Press,2006:1-345.
[11] 范迎风. 查干凹陷沉积与储层特征研究. 北京:中国地质大学 (北京),2006. FAN Y F. The study of sedimentology and reservoir Charatoristics in Chagan Depression. Beijing:China University of Geology (Beijing),2006.
[12] 杨国臣,焦大庆,肖斌,等. 内蒙古银额盆地查干凹陷构造-层 序-沉积特征盆地原型及其成因机制. 古地理学报,2013,15 (3):305-316. YANG G C,JIAO D Q,XAIO B,et al. Tectono-sequence-sedimentary characteristics,basin prototypes and their genetic mechanisms in Chagan Sag of Yin- E Basin,Inner Mongolia. Journal of Paleogeograpgy,2013,15(3):303-316.
[13] FOLK R L. Petrology of sedimentary rocks. Austin,Texas: Hemphill Publishing Company,1974:184.
[14] 魏巍,朱筱敏,谈明轩,等. 查干凹陷下白垩统扇三角洲相储 层特征及物性影响因素. 石油与天然气地质,2015,36(3): 447-455. WEI W,ZHU X M,TAN M X,et al. Reservoir characterastics and influences on poroperm characteristics of the Lower Creataceous fandelta facies in Chagan Depression. Oil & Gas Geology, 2015,36(3):447-455.
[15] 吴思仪,司马立强,袁龙,等. 高邮凹陷阜一段低渗透储层特 征及成因分析.岩性油气藏,2014,26(2):47-53. WU S Y,SIMA L Q,YUAN L,et al. Characteristics and genesis of low permeability reservoir of the first member of Fuyi Formation in Gaoyou Sag. Lithologic Reservoirs,2014,26(2): 47-53.
[16] 黄思静,黄可可,冯文立,等. 成岩过程中长石,高岭石,伊利 石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上 古生界和川西凹陷三叠系须家河组的研究. 地球化学,2009, 38(5):498-506. HUANG S J,HUANG K K,FENG W L,et al. Mass exchanges among feldspar,kaolinite and illite and their influences on secondary porosity formation in clastic diagenesis—A case study on the Upper Paleozoic,Ordos Basin and Xujiahe Formation, Western Sichuan Depression. Geochimica,2009,38(5):498-506.
[17] 史基安,王琪. 影响碎屑岩天然气储层物性的主要控制因素. 沉积学报,1995,13(2):128-139. SHI J A,WANG Q. The main controlling factors affecting the clastic rock gas reservoir property. Acta Sedimentologica Sinica, 1995,13(2):128-139.
[18] BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties,some principal aspects of diagenetic process insedimentary basins. Sedimentary Geology, 2014,301(3):1-14.
[19] TAYLOR T R,GILES M R,HATHON L A,et al. Sandstone diagenesis and reservoir quality prediction:models,myths,and reality. AAPG Bulletin,2010,94(8):1093-1132.
[20] BERGER A,GIER S,KROIS P. Porosity- preserving chlorite cements in shallow-marine volcaniclastic sandstones:Evidence from Cretaceous sandstones of the Sawan gas field,Pakistan. AAPG Bulletin,2009,93(5):595-615.
[21] 潘荣,朱筱敏,王星星,等. 深层有效碎屑岩储层形成机理研 究进展. 岩性油气藏,2014,26(4):73-80. PAN R,ZHU X M,WANG X X,et al. Advancement on formation mechanism of deep effective clastic reservoir. Lithologic Reservoirs,2014,26(4):73-80.
[22] 陈国俊,杜贵超,张功成,等. 珠江口盆地番禺低隆起第三系 储层成岩作用及物性影响因素分析. 天然气地球科学,2009, 20(6):854-861. CHEN GUO J,DU G C,ZHANG G C,et al. Diagenesis and main factors controlling the Tertiary reservoir properties of the Panyu Low-Uplift reservoirs,Pearl River Mouth Basin. Natural Gas Geoscience,2009,20(6):854-861.
[23] 李亚光. 松辽盆地北部中浅层成岩作用研究与孔隙演化. 大 庆:大庆石油学院,2009. LI Y G. Diagenesis and pore evolution of the middle- shallow layer in the northern Songliao Basin. Daqing:Daqing Petroleum Institute,2009.
[24] 王瑞飞,沈平平,赵良金. 深层储集层成岩作用及孔隙度演化 定量模型——以东濮凹陷文东油田沙三段储集层为例. 石油 勘探与开发,2011,38(5):552-559. WANG R F,SHEN P P,ZHAO L J. Diagenesis of deep sandstone reservoirs and a quantitative model of porosity evolution: taking the third member of Shahejie Formation in the Wendong Oilfield,Dongpu Sag,as an example. Petroleum Exploration and Development,2011,38(5):552-559.
[25] 胡浩,路遥,唐群英,等. 川东北地区须家河组储层成岩作用 对孔隙演化影响的定量研究. 岩性油气藏,2014,26(4):103- 109. HU H,LU Y,TANG Q Y,et al. Quantitive research on the effect of diagenesis on porosity evolution of Xujiahe Formation in northeastern Sichuan Basin. Lithologic Reservoirs,2014,26 (4):103-109.
[26] 葛家旺,朱筱敏,潘荣,等. 珠江口盆地惠州凹陷文昌组砂岩 孔隙定量演化模式——以HZ-A地区辫状河三角洲储层为 例.沉积学报,2015,33(1):183-193. GE J W,ZHU X M,PAN R,et al. A quantitive porosity evolution model of sandstone for Wenchang Formation in Huizhou Depression,Pearl River Mouth Basin:a case study for braided fluvial delta reservoir of HZ-Aarea.Acta Sedimentologica Sinica, 2015,33(1):183-193.
[27] BEARD D C,WEYL P K. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin,1973,57 (2):349-369.
[28] SCHERER M. Parameters influencing porosity in sandstones:a model-for sandstone porosity prediction. AAPG Bulletin,1987, 71(5):485-491.
[1] ZHANG Zhigang, LIU Chunyang, LIU Guozhi. Dynamic and static comprehensive evaluation method for reservoir connectivity of low-permeability oilfield [J]. Lithologic Reservoirs, 2019, 31(5): 108-113.
[2] XIONG Shan, WANG Xuesheng, ZHANG Sui, ZHAO Tao, PANG Fei, GAO Lei. Physical properties variation of WXS reservoir after long-term water flooding [J]. Lithologic Reservoirs, 2019, 31(3): 120-129.
[3] LYU Duanchuan, LIN Chengyan, REN Lihua, SONG Jinpeng, DI Xifeng. Flow unit combination and water flooding model of distributary channel sand body in eastern Xing-6 block [J]. Lithologic Reservoirs, 2018, 30(5): 103-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: