Lithologic Reservoirs ›› 2017, Vol. 29 ›› Issue (4): 81-90.doi: 10.3969/j.issn.1673-8926.2017.04.010

Previous Articles     Next Articles

Influences of fractal characteristics of reservoir rocks on permeability

YIN Shuai1, XIE Runcheng2,3, DING Wenlong4, SHAN Yuming2,3, ZHOU Wen2,3   

  1. 1. School of Earth Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Chengdu Universtiy of Technology, Chengdu 610059, China;
    3. College of Energy, Chengdu University of Technology, Chengdu 610059, China;
    4. School of Energy Resources, China University of Geosciences, Beijing 100083, China
  • Received:2016-04-05 Revised:2016-05-25 Online:2017-07-21 Published:2017-07-21

Abstract: In order to characterize the pore structure of different types of reservoirs and cognize its influence on rock permeability,based on the mercury intrusion,nuclear magnetic resonance(NMR)and N2 adsorption experiments,the fractal characteristics of sandstone,coal and shale were compared and analyzed by using the fractal theory, the equivalent capillary tortuosity models were established, and the influences of fractal characteristic parameters of conventional and unconventional reservoir rocks on permeability were discussed. The results show that the fractal dimension(Df)of the three kinds of rocks is in the range of 2.6-3.0,the capillary average tortuosity fractal dimension(DT)is in the range of 1.1-2.3,and the fractal dimension is negatively correlated with rock permeability. The microscopic pore structure factors that influence the rock permeability include heterogeneity of the rock,pore throat size distribution,pore surface roughness and capillary tortuosity,among which the capillary tortuosity has the biggest influence on rock permeability. The equivalent capillary tortuosity of coal,sandstone and shale is relatively small, medium and big, respectively. Finally, the theory of fractal model was used to forecast the permeability of 39 sets of rock samples,the prediction results of sandstone and coal are good. But for shale with strong heterogeneity, its permeability reached nD level. Although the prediction results have a certain degree of coincidence,the prediction accuracy still needs to be further improved. The knowledge obtained in this paper has important reference value in in-depth knowing microscopic percolation mechanism of different kinds of reservoirs.

Key words: boundary fault, structural characteristics, hydrocarbon accumulation, Saihantala Sag, Erlian Basin

CLC Number: 

  • TE312
[1] 钟业勋, 胡宝清, 乔俊军.数学在地图学中的应用.桂林理工大学学报, 2010, 30(1):93-98. ZHONG Y X, HU B Q, QIAO J J. Mathematical application in cartography. Journal of Guilin University of Technology, 2010, 30(1):93-98.
[2] 陈更新, 刘应如, 郭宁, 等.铸体薄片的分形表征——以柴达木盆地昆北新区为例.岩性油气藏, 2016, 28(1):72-76. CHEN G X, LIU Y R, GUO N, et al. Fractal characterization of casting thin sections:a case study from Kunbei area in Qaidam Basin. Lithologic Reservoirs, 2016, 28(1):72-76.
[3] 孙岩, 琚宜文, 陆现彩, 等. 从纳米层次重新认识变形的地质体.矿物岩石地球化学通报, 2016, 35(1):52-55. SUN Y, JU Y W, LU X C, et al. To re-recognize deformable geological bodies on the nano-level. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1):52-55.
[4] 王志伟, 卢双舫, 王民, 等.湖湘、海相泥页岩孔隙分形特征对比.岩性油气藏, 2016, 28(1):88-93. WANG Z W, LU S F, WANG M, et al. Fractal characteristics of lacustrine shale and marine shale. Lithologic Reservoirs, 2016, 28(1):88-93.
[5] 张宪国, 张涛, 林承焰. 基于孔隙分形特征的低渗透储层孔隙结构评价.岩性油气藏, 2013, 25(6):40-45. ZHANG X G, ZHANG T, LIN C Y. Pore structure evaluation of low permeability reservoir based on pore fractal features. Lithologic Reservoirs, 2013, 25(6):40-45.
[6] 姜文, 唐书恒, 张静平, 等.基于压汞分形的高变质石煤孔渗特征分析.煤田地质与勘探, 2013, 41(4):9-13. JIANG W, TANG S H, ZHANG J P, et al. Characteristics of pore permeability of highly metamorphic bone coal. Coal Geology and Exploration, 2013, 41(4):9-13.
[7] 赖锦, 王贵文, 郑懿琼, 等.低渗透碎屑岩储层孔隙结构分形维数计算方法.东北石油大学学报, 2013, 37(1):1-7. LAI J, WANG G W, ZHENG Y Q, et al. Calculation method of low permeable clastic rock reservoir pore structure fractal dimension. Journal of Northeast Petroleum University, 2013, 37(1):1-7.
[8] YAO Y B, LIU D M, TANG D Z, et al. Fractal characterization of adsorption-pores of coals from North China:a investigation on CH4 adsorption capacity of coals. International Journal of Coal Geology, 2008, 73:27-42.
[9] 王刚, 黄娜, 蒋宇静, 等. 虑分形特征的节理面渗流计算模型. 岩石力学与工程学报, 2014, 33(增刊2):3397-3405.WANG G, HUANG N, JIANG Y J, et al. Seepage calculation model for rough joint surface considering fractal characteristics. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Suppl 2):3397-3405.
[10] 杨军, 王潇婷, 龚明辉, 等. 沥青原子力显微镜微观图像的特征分析.石油学报(石油加工), 2015, 31(5):1110-1115. YANG J, WANG X T, GONG M H, et al. Analysis of the microscopic images of asphalt getting from atomic force microscopy. Acta Petrolei Sinica(Petroleum Processing Section), 2015, 31(5):1110-1115.
[11] 陈燕燕, 邹才能, Maria M, 等.页岩微观孔隙演化及分形特征研究. 天然气地球科学, 2015, 26(9):1646-1656. CHEN Y Y, ZOU C N, Maria M, et al. Porosity and fractal characteristics of shale across a maturation gradient. Natural Gas Geoscience, 2015, 26(9):1646-1656.
[12] 赵靖舟, 王芮, 耳闯.鄂尔多斯盆地延长组长7段暗色泥页岩吸附特征及其影响因素.地学前缘, 2016, 23(1):146-153. ZHAO J Z, WANG R, ER C. Adsorption characteristics of Chang 7 shale from the Triassic Yanchang Formation in Ordos Basin, and its controlling factor. Earth Science Frontiers, 2016, 23(1):146-153.
[13] 戴金星, 倪云燕, 黄士鹏, 等.煤成气研究对中国天然气工业发展的重要意义.天然气地球科学, 2014, 25(1):1-17. DAI J X, NI Y Y, HUANG S P, et al. Significant function of coal-derived gas study for natural gas industry development in China. Natural Gas Geoscience, 2014, 25(1):1-17.
[14] ZHANG Z Y, Weller A. Fractal dimension of pore-space geometry of an Eocene sandstone formation. Geophysics, 2014, 79(6):377-387.
[15] YANG F, NING F Z, LIU H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China. Fuel, 2014, 115:378-384.
[16] SU X B, LIN X Y, ZHAO M J, et al. The Upper Paleozoic coalbed methane system in the Qinshui Basin, China. AAPG Bulletin, 2005, 89(1):81-100.
[17] TIAB D, DONALDSON E C. Petrophysics:theory and practice of measuring reservoir rock and fluid transport properties. Elsevier, 2004.
[18] 付常青, 朱炎铭, 陈尚斌. 浙西荷塘组页岩孔隙结构及分形特征研究. 中国矿业大学学报, 2016, 45(1):77-86. FU C Q, ZHU Y M, CHEN S B. Pore structure and fractal features of Hetang Formation shale in western Zhejiang. Journal of China University of Mining and Technology, 2016, 45(1):77-86.
[19] URSULA I V, JORGE O P. Artificial neural networks applied to estimate permeability, porosity and intrinsic attenuation using seismic attributes and well-log data. Journal of Applied Geophysics, 2014, 107:45-54.
[20] YU B M, LI J H. A geometry model for tortuosity of flow path in porous media. Chinese Physics Letters, 2004, 21(8):1569-1571.
[21] XU P, YU B M. Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Chinese Physics Letters, 2008, 31(1):74-81.
[22] WU J S, YU B M. A fractal resistance model for flow through porous media. International Journal of Heat and Mass Transfer, 2007, 50(19):3925-3932.
[23] 于炳松. 页岩气储层孔隙分类与表征. 地学前缘, 2013, 20(4):211-220. YU B S. Classification and characterization of gas shale pore system. Earth Science Frontiers, 2013, 20(4):211-220.
[24] CARMAN P C. Fluid flow through granular beds. Transactions of the Institution of Chemical Engineers, 1937, 15:150-156.
[25] HAN T, BEST A T, MACGREGOR L M, et al. Joint elastic electrical effective medium models of reservoir sandstones. Geophysical Prospecting, 2011, 59:777-786.
[26] WYLLIE M R J, SPANGLER M B.Application of electrical resistivity measurements to problem of fluid flow in porous media. AAPG Bulletin, 1952, 36(2):359-403.
[27] 尹帅, 丁文龙, 孙雅雄, 等.泥页岩单轴抗压破裂特征及UCS影响因素. 地学前缘, 2016, 23(2):75-95. YIN S, DING W L, SUN Y X, et al. Shale uniaxial compressive failure property and the affecting factors of UCS. Earth Science Frontiers, 2016, 23(2):75-95.
[28] WARUNTORN K, ROMAN V, HANS R W, et al. Linking preferred orientations to elastic anisotropy in Muderong shale, Australia. Geophysics, 2015, 80(1):9-19.
[29] XIAO L, MAO Z Q, JIN Y. Tight gas sandstone reservoir evaluation from nuclear magnetic resonance(NMR)logs:case studies. Arab Journal Science Engineering, 2015, 40:1223-1237.
[30] 白瑞婷, 李治平, 南郡祥, 等.考虑启动压力梯度的致密砂岩储层渗透率分形模型. 天然气地球科学, 2016, 27(1):142-148. BAI R T, LI Z P, NAN J X, et al. The fractal permeability model in tight sand reservoir accounts for start-up gradient. Natural Gas Geoscience, 2016, 27(1):142-148.
[31] 杨峰, 宁正福, 胡昌蓬, 等.页岩储层微观孔隙结构特征.石油学报, 2013, 34(2):301-311. YANG F, NING Z F, HU C P, et al. Characterization of microscopic pore structures in shale reservoirs. Acta Petrolei Sinica, 2013, 34(2):301-311.
[1] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[2] ZHOU Hongfeng, WU Haihong, YANG Yuxi, XIANG Hongying, GAO Jihong, HE Haowen, ZHAO Xu. Sedimentary characteristics of fan delta front of the fourth member of Cretaceous A’ershan Formation in Bayindulan Sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(4): 85-97.
[3] XI Zhibo, LIAO Jianping, GAO Rongjin, ZHOU Xiaolong, LEI Wenwen. Tectonic evolution and hydrocarbon accumulation in northern Chenjia fault zone,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 127-136.
[4] NIU Chengmin, HUI Guanzhou, DU Xiaofeng, GUAN Dayong, WANG Bingjie, WANG Qiming, ZHANG Hongguo. Sedimentary model of sublacustrine fan of the third member of Paleogene Dongying Formation and large-scale oilfield discovered in western slope of Liaozhong Sag [J]. Lithologic Reservoirs, 2024, 36(2): 33-42.
[5] YIN Lu, XU Duonian, YUE Xingfu, QI Wen, ZHANG Jijuan. Reservoir characteristics and hydrocarbon accumulation rules of Triassic Baikouquan Formation in Mahu Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 59-68.
[6] MA Feng, PANG Wenzhu, ZHAO Wenguang, ZHANG Bin, ZHAO Yanjun, XUE Luo, ZHENG Xi, CHEN Bintao. Main controlling factors and hydrocarbon accumulation models of structurallithologic reservoirs above source kitchen in rift basins in South Sudan [J]. Lithologic Reservoirs, 2023, 35(6): 92-105.
[7] YANG Runze, ZHAO Xianzheng, LIU Haitao, LI Hongjun, ZHAO Changyi, PU Xiugang. Hydrocarbon accumulation characteristics and favorable zones prediction in and under source of Paleozoic in Huanghua Depression,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 110-125.
[8] HE Yong, QIU Xinwei, LEI Yongchang, XIE Shiwen, XIAO Zhangbo, LI Min. Tectonic evolution and hydrocarbon accumulation characteristics of Cenozoic in eastern Lufeng 13 subsag, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(1): 74-82.
[9] XIE Rui, ZHANG Shangfeng, ZHOU Lin, LIU Haotian, YAO Mingjun, JIANG Xuegui. Hydrocarbon accumulation characteristics of tight reservoirs of Da'anzhai member of Jurassic Ziliujing Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(1): 108-119.
[10] YU Haibo. Tectonic characteristics and favorable exploration zones of Paleozoic in Dongpu Sag [J]. Lithologic Reservoirs, 2022, 34(6): 72-79.
[11] SUI Liwei, YANG Wenlu, LI Junhui, FAN Xiaodong, JIANG Hongfu, WEN Quan, ZHANG Dazhi, YUAN Yong. Sedimentary characteristics and reservoir control of beach bar in faulted lake basin:A case study of Cretaceous Tongbomiao Formation in Tanan Sag [J]. Lithologic Reservoirs, 2022, 34(5): 100-109.
[12] YIN Yuyi, YAO Zhichun, GUO Xiaobo, WANG Leli, CHEN Siqian, YU Xiaolei, CEN Xiangyang. Characteristics of Permian concealed structures in western margin of Ordos Basin and its significance for oil and gas exploration [J]. Lithologic Reservoirs, 2022, 34(4): 79-88.
[13] MIAO Huan, WANG Yanbin, HE Chuan, LI Jianhong, ZHANG Wei, ZHANG Yujian, GONG Xun. Fault development characteristics and reservoir control in Chengbei fault step zone, Bohai Bay Basin [J]. Lithologic Reservoirs, 2022, 34(2): 105-115.
[14] LI Bo, CUI Junping, LI Ying, LI Jinsen, ZHAO Jin, CHEN Yanwu. Hydrocarbon accumulation phases of Yanchang Formation in Wuqi area, Yishan slope [J]. Lithologic Reservoirs, 2021, 33(6): 21-28.
[15] SHAO Xiaozhou, WANG Miaomiao, QI Yalin, HE Tongtong, ZHANG Xiaolei, PANG Jinlian, GUO Yixuan. Characteristics and main controlling factors of Chang 8 reservoir in northern Pingliang area,Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(6): 59-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: