Lithologic Reservoirs ›› 2019, Vol. 31 ›› Issue (2): 1-7.doi: 10.12108/yxyqc.20190201

    Next Articles

Progress and application of CO2 fracturing technology for unconventional oil and gas

WANG Xiangzeng1, SUN Xiao2, LUO Pan2, MU Jingfu2   

  1. 1. Shaanxi Yanchang Petroleum(Group) CO., LTD., Xi'an 710075, China;
    2. Research Institute of Shannxi Yanchang Petroleum(Group) CO., LTD., Xi'an 710075, China
  • Received:2018-10-25 Revised:2019-01-18 Online:2019-03-21 Published:2019-03-21

Abstract: Unconventional oil and gas are very important superseding resources in China,for poor porosity and permeability,reservoir simulation technology is necessary and large-scale hydraulic fracturing is very effective, but some consequent problems such as high water consumption,high reservoir damage and environmental pollution are inevasible. CO2 fracturing technology,which fully used the CO2 characteristics of easy to diffusion, good formation compatibility and increasing the formation energy, has advantages of saving water,protecting environment,burying CO2 and increasing oil and gas production. Laboratory experiment and field practice indicate that CO2 fracturing technology can effectively reduce reservoir damage, improve reservoir properties,reduce rock initiation pressure,form complex fracture network,replace CH4 and reduce crude oil viscosity. Compared with hydraulic fracturing technology,it can improve backflow rate above 25%,and improve the average single well production above 1.9 times. By further optimizing of technology,developing matching equipment and relevant standards,exploring the overall development of blocks,CO2 fracturing technology will greatly promote the green and efficient development of unconventional oil and gas in China.

Key words: unconventional oil and gas, CO2 fracturing, stimulation mechanism, technical progress

CLC Number: 

  • TE122.2
[1] 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景.石油勘探与开发, 2012, 39(2):129-136. JIA C Z, ZHENG M, ZHANG Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development. Petroleum Exploration and Development, 2012, 39(2):129-136.
[2] HOLDITCH S A. Tight gas sands. Journal of Petroleum Technology, 2006, 58(6):86-93.
[3] 中华人民共和国国家技术监督局.GB/T 31483-2015页岩气地质评价方法.北京:中国标准出版社, 2015. State Bureau of Technical Supervision of the People's Republic of China. GB/T 31483-2015 Geological evaluation method of shale gas. Beijing:China Standard Press, 2015.
[4] 吴安林, 李嘉, 张晓虎. 长宁区块页岩气压裂液体系应用分析.天然气技术与经济, 2018, 12(3):23-25. WU A L, LI J, ZHANG X H. Application fracturing-fluid system to shale gas well,Changning block. Natural Gas Technology and Economy, 2018, 12(3):23-25.
[5] 杨长军, 田庆华, 陈亚平, 等.浅谈页岩气开发对川南地区水资源的影响.环境工程, 2018, 36(增刊1):117-121. YANG C J, TIAN Q H, CHEN Y P, et al. Impacts of the process of shale gas development on water resource in southern Sichuan area. Environmental Engineering, 2018, 36(suppl 1):117-121.
[6] 王满学, 何娜.液态CO2干法加砂压裂增稠剂技术现状及展望.石油与天然气化工, 2017, 46(3):57-62. WANG M X, HE N. Research progress and prospective in liquid CO 2 dry fracturing thickeners technology. Chemical Engineering of Oil & Gas, 2017, 46(3):57-62.
[7] TOUZEL P. Managing environmental and social risks in China. SPE 156503, 2012.
[8] SLUTZ J A, ANDERSON J A, BRODERICK R, et al. Key shale gas water management strategies:an economic assessment. International Conference on Health,Safety and Environment in Oil and Gas Exploration and Production. SPE 157532, 2012.
[9] GUPTA D V, BOBIER D M. The history and success of liquid CO 2 and CO2/N2 fracturing system. SPE 40016, 1998.
[10] 杨雪, 张凡, 杨欢.二氧化碳干法压裂增产技术及展望.当代化工研究, 2016, 11(1):77-79. YANG X, ZHANG F, YANG H. Production increase technology and outlook of CO 2 dry fracturing. Chemical Intermediate, 2016, 11(1):77-79.
[11] 段百奇, 王树众, 沈林华, 等.干法压裂技术在实施中的经济分析.天然气工业, 2006, 26(8):104-106. DUAN B Q, WANG S Z, SHEN L H, et al. Economic analysis of CO 2/sand fracturing technology for water sensitivity and lowpermeability gas reservoirs. Nature Gas Industry, 2006, 26(8):104-106.
[12] LIU Q Y, LEI T, ZHU H Y, et al. Macroscale mechanical and microscale structural changes in Chinese Wufeng shale with supercritical carbon dioxide fracturing. SPE Journal, 2017.
[13] 孙可明, 吴迪, 粟爱国, 等.超临界CO2 作用下媒体渗透性与孔隙压力-有效体积应力-温度耦合规律试验研究.岩石力学与工程学报, 2013, 32(2):3760-3767. SUN K M, WU D, SU A G, et al. Coupling experimental study of coal permeability with pore pressure-effective volume stresstemperature under supercritical carbon dioxide action. Journal of Rock Mechanics and Engineering, 2013, 32(2):3760-3767.
[14] TUDOR R, VOZNIAK C, PETERS W, et al. Technical advances in liquid CO2 fracturing. PETSOC, 1994.
[15] 岳立新, 孙可明.超临界CO2增透煤微观图像重构及三维数值模拟.中国安全生产科学技术, 2017, 13(1):58-64. YUE L X, SUN K M. Microscopic image reconstruction and three-dimensional numerical simulation of supercritical CO2 antireflection coal. Journal of Safety Science and Technology, 2017, 13(1):58-64.
[16] 王海柱, 沈忠厚, 李根生.超临界CO2开发页岩气技术.石油钻井技术, 2011, 39(3):30-35. WANG H Z, SHEN Z H, LI G S. Feasibility analysis on shale gas exploration with supercritical CO2. Petroleum Drilling Tecniques, 2011, 39(3):30-35.
[17] ZHANG X W, LU Y Y, TANG J R, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing. Fuel, 2016, 190:370-378.
[18] KOLLE J J. Coiled-tubing drilling with supercritical carbon dioxide. SPE 65534, 2000.
[19] GUPTA S V S, BOBIER D M. The history and success of liquid CO 2 and CO2/N2 fracturing system. SPE 40016, 1998.
[20] 丁勇, 马新星, 叶亮, 等.CO2破岩机理及压裂工艺技术研究. 岩性油气藏, 2018, 30(6):151-159. DING Y, MA X X, YE L, et al. Rock breaking mechanism of CO 2 and fracturing technology. Lithologic Reservoirs, 2018, 30(6):151-159.
[21] 卢义玉, 廖引, 汤积仁, 等.页岩超临界CO2压裂起裂压力与裂缝形态试验研究. 煤炭学报, 2018, 43(1):175-180. LU Y Y, LIAO Y, TANG J R, et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO 2 fracturing. Journal of China Coal Society, 2018, 43(1):175-180.
[22] KIZAKI A, TANAKA H, OHASHI K, et al. Hydraulic fracturing in Inada granite and Ogino tuff with super critical carbon dioxide. ISRM-ARMS 7-2012-109, 2012.
[23] DUAN S, GU M, DU X D, et al. Adsorption equilibrium of CO 2 and CH4 and their mixture on Sichuan Basin shale. Energy Fuels, 2016, 30:2248-2256.
[24] 夏惠芬, 徐勇.低渗透油藏CO2驱油机理及应用现状研究.当代化工, 2017, 46(3):471-474. XIA H F,XU Y. Study in the mechanism and application of CO2 flooding in low permeability reservoirs. Contemporary Chemical Industry, 2017, 46(3):471-474.
[25] 孙鑫, 杜明勇, 韩彬彬, 等. 二氧化碳压裂技术研究综述.当代化工, 2017, 34(2):374-380. SUN X, DU M Y, HAN B B, et al. Review on carbon dioxide fracturing technology. Oilfield Chemistry, 2017, 34(2):374-380.
[26] HOSSEINI H, TSAU J, PELTIER E, et al. Lowering fresh water usage in hydraulic fracturing by stabilizing scCO2 foam with polyelectrolyte complex nanoparticles prepared in high salinity produced water. SPE International Conference & Exhibition on Formation Damage Control, 2018.
[27] 陈挺, 周勋, 刘智恪, 等.低残渣CO2 泡沫压裂液在苏里格低压低渗气藏的应用.钻采工艺, 2018, 41(5):92-94. CHEN T, ZHOU X, LIU Z G, et al. Application of low residue CO 2 foam fracturing fluid in low pressure low permeability gas reservoirs in Sulige. Drilling & Production Technology, 2018, 41(5):92-94.
[28] 高志亮, 段玉秀, 吴金桥, 等.酸性交联CO2泡沫压裂液起泡剂的研制及其性能研究.钻井液与完井液, 2013, 30(5):79-81. GAO Z L, DUAN Y X, WU J Q, et al. Selection and performance study of foaming agent of CO2 acidic crosslinking foam fracturing liquid. Drilling Fluid and Completion Fluid, 2013, 30(5):79-81.
[29] SUN X, LIANG X B, WANG S Z, et al. Experimental study on the rheology of CO2 viscoelastic surfactant foam fracturing fluid. Journal of Petroleum Science and Engineering, 2014, 119:104-111.
[30] 王香增.延长石油集团非常规天然气勘探开发进展.石油学报, 2016, 37(1):137-143. WANG X Z. Advances in unconventional gas exploration and development of Yanchang Petroleum Group. Acta Petrolei Sinica, 2016, 37(1):137-143.
[31] 贾光亮. 东胜气田超临界CO2 复合干法压裂技术试验. 重庆科技学院学报(自然科学版), 2018, 20(2):24-27. JIA G L. Compound dry fracturing technology with supercritical carbon dioxide in Dongsheng gas field. Journal of Chongqing University of Science and Technology(Natural Science Edition), 2018, 20(2):24-27.
[32] MIDDLETON R S, CAREY J W, CURRIER R P, et al. Shale gas and non-aqueous fracturing fluids:Opportunities and challenges for supercritical CO2. Applied Energy, 2015, 147(3):500-509.
[33] 李珊, 郑维师. 国外新型CO2密闭混砂装置及液态CO2压裂案例分析.钻采工艺, 2017, 40(5):36-38. LI S, ZHENG W S. A new airtight CO2/proppant blender and a case study of water-free CO2 fracturing abroad. Drilling & Production Technology, 2017, 40(5):36-38.
[34] 刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术:应用现状与发展趋势. 石油勘探与开发, 2014, 41(4):466-472. LIU H, WANG F, ZHANG J, et al. Fracturing with carbon dioxide:Application and development trend. Petroleum Exploration and Development, 2014, 41(4):466-472.
[35] 韩烈祥.CO2干法加砂压裂技术试验成功.钻采工艺, 2013, 36(5):99. HAN L X. The success of experiment on sand fracturing with liquid carbon dioxide. Drilling and Production Technology, 2013, 36(5):99.
[36] 田磊, 何建军, 杨振周, 等.二氧化碳蓄能压裂技术在吉林油田的应用.钻井液与完井液, 2015, 32(6):78-80. TIAN L, HE J J, YANG Z Z, et al. Application of CO2 energized fracturing fluid technology in Jilin Oilfield. Drilling Fluid and Completion Fluid, 2015, 32(6):78-80.
[37] 王香增, 吴金桥, 张军涛.陆相页岩气层的CO2压裂技术应用探讨.天然气工业, 2014, 34(1):64-67. WANG X Z, WU J Q, ZHANG J T. Application of CO2 fracturing technology for terrestrial shale gas reservoirs. Nature Gas Industry, 2014, 34(1):64-67.
[1] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[2] LUO Qun, WANG Jingling, LUO Jiaguo, WU Anbin. Hypothesis outline of fracture-pore coupling enriching hydrocarbon on unconventional oil and gas [J]. Lithologic Reservoirs, 2019, 31(4): 1-12.
[3] DING Yong, MA Xinxing, YE Liang, XIAO Yuanxiang, ZHANG Yanming, GU Yonghong, MA Chaoxing. Rock breaking mechanism of CO2 and fracturing technology [J]. Lithologic Reservoirs, 2018, 30(6): 151-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[2] LIU Zhen,CHEN Yanpeng,ZHAO Yang,HAO Qi,XU Xiaoming,CHANG Mai. Distribution and controlling factors of hydrocarbon reservoirs in continental fault basins[J]. Lithologic Reservoirs, 2007, 19(2): 121 -127 .
[3] DING Chao,GUO Lan,YAN Jifu. Forming conditions of Chang 6 reservoir in Anding area of Zichang Oilfield[J]. Lithologic Reservoirs, 2009, 21(1): 46 -50 .
[4] LI Yanshan,ZHANG Zhansong,ZHANG Chaomo,CHEN Peng. Application of mercury injection data to Chang 6 reservoir classification in Changqing area[J]. Lithologic Reservoirs, 2009, 21(2): 91 -93 .
[5] LUO Peng,LI Guorong,SHI Zejin,ZHOU Dazhi,TANG Hongwei,ZHANG Deming. Analysis of sequence stratigraphy and sedimentary facies of M aokou Formation in southeastern Sichuan[J]. Lithologic Reservoirs, 2010, 22(2): 74 -78 .
[6] ZUO Guoping, TU Xiaolong, XIA Jiufeng. Study on volcanic reservoir types in Subei exploration area[J]. Lithologic Reservoirs, 2012, 24(2): 37 -41 .
[7] WANG Feiyu. Method to improve producing degree of thermal recovery horizontal wells and its application[J]. Lithologic Reservoirs, 2010, 22(Z1): 100 -103 .
[8] YUAN Yunfeng,CAI Ye,FAN Zuochun,JIANG Yiyang,QIN Qirong, JIANG Qingping. Fracture characteristics of Carboniferous volcanic reservoirs in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2011, 23(1): 47 -51 .
[9] YUAN Jianying, FU Suotang, CAO Zhenglin, YAN Cunfeng,ZHANG Shuichang, MA Dade. Multi-source hydrocarbon generation and accumulation of plateau multiple petroleum system in Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(3): 7 -14 .
[10] SHI Zhanzhan, HE Zhenhua, WEN Xiaotao, TANG Xiangrong. Reservoir detection based on EMD and GHT[J]. Lithologic Reservoirs, 2011, 23(3): 102 -105 .
TRENDMD: