Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (6): 151-159.doi: 10.12108/yxyqc.20180619

Previous Articles     Next Articles

Rock breaking mechanism of CO2 and fracturing technology

DING Yong1,2, MA Xinxing1, YE Liang1, XIAO Yuanxiang1, ZHANG Yanming1, GU Yonghong1, MA Chaoxing3   

  1. 1. Research Institute of Oil & Gas Technology, PetroChina Changqing Oilfield Company, Xi'an 710018, China;
    2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi'an 710018, China;
    3. No.11 Oil Production Plant, PetroChina Changqing Oilfield Company, Xifeng 745000, Gansu, China
  • Received:2018-02-02 Revised:2018-09-04 Online:2018-11-16 Published:2018-11-16

Abstract: In order to make clear the change rule of effective stress during the injection processes with different media and reveal the mechanical mechanism of low break down pressure, long penetrate distance and high fracture distribution density during super-critical CO2 fracturing, based on linear elastic porous medium model and linear decomposition of anisotropic stress on wellbore plane, pressurization rate was introduced to carry out correction of pore pressure and additional circumferential stress. In view of the characteristics of tight gas reservoir in Changqing gas field, with the dual advantages of CO2 rock breaking, pressurizing and slick water volume fracturing, geological reserve volume difference method of gas reservoir was improved to optimizing the CO2 injection quantity. According to the monitoring data of down hole pressure gauge, the dynamic filtration loss equilibrium point was analyzed, and the CO2 construction displacement was obtained. Thanks to anti-freeze isolating liquid, a single fracturing unit operation process was formed. Finally, CO2 volume fracturing technology was formed. The result shows that fracture initiation pressure dropped by 69.2% in the case of liquid CO2 and 75.5% in the case of super-critical CO2. Pilot tests were carried out on six wells in eastern Ordos Basin, 100% cleanup with no nitrogen lift, and the average single layer initial gas rate of subject wells is 75 900 m3/d, which indicates that CO2 fracturing techniques is expected to be a new stimulation method for Changqing gas field.

Key words: tight gas, CO2 fracturing, rock breaking criterion, mechanism of increasing production

CLC Number: 

  • TE357.3
[1] 胡俊坤, 龚伟, 任科.中国致密气开发关键因素分析与对策思考. 天然气技术与经济, 2015, 9(6):24-29. HU J K, GONG W, REN K. Key factors affecting China tightgas development and some countermeasures. Natural Gas Technology and Economy, 2015, 9(6):24-29.
[2] 位云生, 贾爱林, 何东博, 等.中国页岩气与致密气开发特征与开发技术异同. 天然气工业, 2017, 37(11):43-52. WEI Y S, JIA A L, HE D B, et al. Comparative analysis of development characteristics and technologies between shale gas and tight gas in China. Natural Gas Industry, 2017, 37(11):43-52.
[3] 贾爱林. 中国天然气开发技术进展及展望. 天然气工业, 2018, 38(4):77-85. JIA A L. Progress and prospects of natural gas development technologies in China. Natural Gas Industry, 2018, 38(4):77-85.
[4] 王朋岩, 邴振阳. 全球致密砂岩气资源分布特征与规律. 中国锰业, 2017, 35(6):23-29. WANG P Y, BING Z Y. Distribution characteristics and regularities of tight sandstone gas resources in the world. China's Manganese Industry, 2017, 35(6):23-29.
[5] 杨华, 付金华, 刘新社, 等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发.石油勘探与开发, 2012, 39(3):295-303. YANG H, FU J H, LIU X S, et al. Accumulation conditions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin. Petroleum Exploration and Development, 2012, 39(3):295-303.
[6] 覃小丽, 李荣西, 席胜利, 等.鄂尔多斯盆地东部地区太原组储层黏土矿物特征及成因.岩性油气藏, 2016, 28(1):50-55. QIN X L, LI R X, XI S L, et al. Characteristics and origin of clay minerals of Taiyuan Formation in eastern Ordos Basin. Lithologic Reservoirs, 2016, 28(1):50-55.
[7] 马力, 欧阳传湘, 谭钲扬, 等.低渗透油藏CO2驱中后期提效方法研究. 岩性油气藏, 2018, 30(2):141-144. MA L, OUYANG C X, TAN Z Y, et al. Efficiency improvement of CO2 flooding in middle and later stage for low permeability reservoirs. Lithologic Reservoirs, 2018, 30(2):141-144.
[8] 吴金桥, 高志亮, 孙晓, 等. 液态CO2压裂技术研究现状与展望.长江大学学报(自科版), 2014, 11(10):104-107. WU J Q, GAO Z L, SUN X, et al. Research and prospect of CO2 fracturing technology. Journal of Yangtze University(Natural Science Edition), 2014, 11(10):104-107.
[9] 杨发, 汪小宇, 李勇. 二氧化碳压裂液研究及应用现状.石油化工应用, 2014, 33(12):9-12. YANG F, WANG X Y, LI Y. Research and application status of carbon dioxide fracturing fluid. Petrochemical Industry Application, 2014, 33(12):9-12.
[10] KING S R. Liquid CO2 for the stimulation of low-permeability reservoirs. SPE 11616, 1983.
[11] YOST Ⅱ A B, GEHR J B. CO2/sand fracturing in Devonian shales. SPE 26925, 1993.
[12] GUPTA D V S, BOBIER D M. The history and success of liquid CO2 and CO2/N2 fracturing system. SPE 40016, 1998.
[13] 谢平, 侯光东, 韩静静.CO2压裂技术在苏里格气田的应用. 断块油气田, 2009, 16(5):104-106. XIE P, HOU G D, HAN J J. Application of CO2 fracturing technology in Sulige Gas Field. Fault-Block Oil & Gas Field, 2009, 16(5):104-106.
[14] 卢义玉, 廖引, 汤积仁, 等.页岩超临界CO2压裂起裂压力与裂缝形态试验研究. 煤炭学报, 2018, 43(1):176-180. LU Y Y, LIAO Y, TANG J R, et al. Experimental study on fracture initiation pressure and morphology in shale using supercritical CO2 fracturing. Journal of China Coal Society, 2018, 43(1):176-180.
[15] 宋振云, 苏伟东, 杨延增, 等. CO2干法加砂压裂技术研究与实践. 天然气工业, 2014, 34(6):55-59. SONG Z Y, SU W D, YANG Y Z, et al. Experimental studies of CO2/sand dry-frac process. Natural Gas Industry, 2014, 34(6):55-59.
[16] 王香增, 吴金桥, 张军涛.陆相页岩气层的CO2压裂技术应用探讨. 天然气工业, 2014, 34(1):64-67. WANG X Z, WU J Q, ZHANG J T. Application of CO2 fracturing technology for terrestrial shale gas reservoirs. Natural Gas Industry, 2014, 34(1):64-67.
[17] 陈立强, 田守嶒, 李根生, 等.超临界CO2压裂起裂压力模型与参数敏感性研究. 岩土力学, 2015, 36(2):125-130. CHEN L Q, TIAN S Z, LI G S, et al. Initiation pressure models for supercritical CO2 fracturing and sensitivity analysis. Rock and Soil Mechanics, 2015, 36(2):125-130.
[18] 孙可明, 吴迪, 粟爱国, 等.超临界CO2作用下煤体渗透性与孔隙压力-有效体积应力-温度耦合规律试验研究. 岩石力学与工程学报, 2013, 32(2):3760-3767. SUN K M, WU D, SU A G, et al. Coupling experimental study of coal permeability with pore pressure-effective volume stresstemperature under supercritical carbon dioxide action. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2):3760-3767.
[19] 陆友莲, 王树众, 沈林华, 等. 纯液态CO2压裂非稳态过程数值模拟. 天然气工业, 2008, 28(11):93-95. LU Y L, WANG S Z, SHEN L H, et al. Numerical simulation on the initial unstable stages of liquid CO2 fracturing. Natural Gas Industry, 2008, 28(11):93-95.
[20] 赵志恒, 李晓, 张搏, 等.超临界二氧化碳无水压裂新技术实验研究展望. 天然气勘探与开发, 2016, 39(2):58-63. ZHAO Z H, LI X, ZHANG B, et al. Experimental study on supercritical CO2 fracturing. Natural Gas Exploration & Development, 2016, 39(2):58-63.
[21] 陈丽华.强水敏储层矿物高温变化对储层物性的影响——以金家油田沙一段为例. 岩性油气藏, 2016, 28(4):121-126. CHEN L H. Influence of thermal alteration of minerals in strong water sensitive reservoir on physical properties:a case study from the first member of Shahejie Formation in Jinjia Oilfield. Lithologic Reservoirs, 2016, 28(4):121-126.
[22] 孙小辉, 孙宝江, 王志远.超临界CO2压裂裂缝温度场模型. 石油学报, 2015, 36(12):1587-1592. SUN X H, SUN B J, WANG Z Y. Fissure temperature field model of supercritical CO2 fracturing. Lithologic Reservoirs, 2015, 36(12):1587-1592.
[23] 刘合, 王峰, 张劲, 等. 二氧化碳干法压裂技术——应用现状与发展趋势. 石油勘探与开发, 2014, 41(4):466-472. LIU H, WANG F, ZHANG J, et al. Fracturing with carbon dioxide:Application status and development trend. Petroleum Exploration and Development, 2014, 41(4):466-472.
[24] 张健, 敬季昀, 王杏尊.利用小型压裂短时间压降数据快速获取储层参数的新方法. 岩性油气藏, 2018, 30(4):133-139. ZHANG J, JIN J Y, WANG X Z. New method for obtaining reservoir parameters with a short time of pressure drop after mini-fracturing. Lithologic Reservoirs, 2018, 30(4):133-139.
[1] DU Changpeng. Natural gas accumulation conditions and main controlling factors of Cretaceous tight volcanic rocks in Yingshan-Shuangcheng fault depression,Songliao Basin [J]. Lithologic Reservoirs, 2023, 35(4): 115-124.
[2] ZHANG Manlang, KONG Fanzhi, GU Jiangrui, GUO Zhenhua, FU Jing, ZHENG Guoqiang, QIAN Pinshu. Assessment of glutenite reservoirs and optimization of prospects of Zhenzhuchong Formation in Jiulongshan gas field,Sichuan Basin [J]. Lithologic Reservoirs, 2020, 32(3): 1-13.
[3] WANG Xiangzeng, SUN Xiao, LUO Pan, MU Jingfu. Progress and application of CO2 fracturing technology for unconventional oil and gas [J]. Lithologic Reservoirs, 2019, 31(2): 1-7.
[4] HE Jixiang, JIANG Ruizhong, MAO Yu, YUAN Lin. Productivity calculation method for gas-water two phase fractured horizontal wells in tight gas reservoir [J]. Lithologic Reservoirs, 2017, 29(4): 154-161.
[5] ZHANG Jie, ZHANG Chaomo, ZHANG Zhansong, ZHANG Chong, NIE Xin. Brittleness of tight gas reservoirs based on stress-strain curves [J]. Lithologic Reservoirs, 2017, 29(3): 126-131.
[6] CHU Cuijin, XIA Zhilin, YANG Zhiqiang. Logging identification and evaluation of tight sandstone gas in the southern Yanchuan block [J]. Lithologic Reservoirs, 2017, 29(2): 131-138.
[7] Guo Ping,Xu Qinghua,Sun Zhen,Du Jianfen,Wang Zhouhua. Research progress of CO2 flooding and geological storage in gas reservoirs [J]. Lithologic Reservoirs, 2016, 28(3): 6-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: