Lithologic Reservoirs ›› 2018, Vol. 30 ›› Issue (6): 160-168.doi: 10.12108/yxyqc.20180620

Previous Articles    

Optimization and application of deep gas well fracturing in Pingqiao block of Fuling shale gas field

ZHANG Chi   

  1. Sinopec Chongqing Fuling Shale Gas Exploration and Development Co., Ltd., Fuling 408014, Chongqing, China
  • Received:2018-03-22 Revised:2018-07-28 Online:2018-11-16 Published:2018-11-16

Abstract: The main layer of the shale in Pingqiao block of Fuling shale gas field has a depth of 3 900-4 100 m, which is located in the strong compressive stress area and has large formation dip, so the effect of formation fracturing is limited. The optimization of deep fracturing technology was studied by combining experimental simulation with field test. The results show that optimizing deep fracturing technology mainly includes the following methods: (1)Optimizing the distance of stages between 45 m and 50 m; (2)Using directional three-cluster perfora-tion can avoid the problem of deep fracture extending along the bedding, but also can ensure that the fracture has a certain degree of complexity; (3)Rapidly increasing the construction displacement of pre-glue fluid and increasing the construction displacement step by step in the stage of drag-reducing water and sand-carrying, which is beneficial to increase the complexity of the fractures after forming a certain width of main fracture in the initial stage; (4)The single-stage construction scale should be controlled at 1 900-2 000 m3. Compared with the conventional fracturing process, the net pressure in fracture increased by 12.5%, the average sand-fluid ratio increased by 75.56%, and the average single-stage gas production increased by 114.90%. The optimized process has broad application prospects.

Key words: fracturing, deep shale, distance between stages, directional perforation, construction displacement, construction scale

CLC Number: 

  • TE357.1
[1] 陈作, 曾义金.深层页岩气分段压裂技术现状及发展建议.石油钻探技术, 2016, 44(1):6-11. CHEN Z, ZENG Y J. Present situations and prospects of multistage fracturing technology for deep shale gas development. Petroleum Drilling Techniques, 2016, 44(1):6-11.
[2] 蒋廷学, 卞晓冰, 王海涛, 等.深层页岩气水平井体积压裂技术.天然气工业, 2017, 37(1):90-96. JIANG T X, BIAN X B, WANG H T, et al. Volume fracturing of deep shale horizontal wells. Natural Gas Industry, 2017, 37(1):90-96.
[3] 周祥, 张士诚, 邹雨时, 等.致密油藏水平井体积压裂裂缝扩展及产能模拟.西安石油大学学报(自然科学版), 2015, 30(4):53-58. ZHOU X, ZHANG S C, ZOU Y S, et al. Simulation of fracture propagation and productivity of volume fracturing horizontal well in tight oil reservoirs. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(4):53-58.
[4] 贾长贵, 路保平, 蒋廷学, 等. DY2 HF深层页岩气水平井分段压裂技术.石油钻探技术, 2014, 42(2):85-90. JIA C G, LU B P, JIANG T X, et al. Multi-stage horizontal well fracturing technology in deep shale gas well DY2 HF. Petroleum Drilling Techniques, 2014, 42(2):85-90.
[5] 王成龙, 夏宏泉, 刘国良. SK高陡构造地层地应力的测井解释及应用研究.国外测井技术, 2013(6):35-38. WANG C L, XIA H Q, LIU G L. Logging interpretation of the crustal stress in SK high steep structure formation and its application. World Well Logging Technology, 2013(6):35-38.
[6] 赵军, 蒲万丽, 王贵文, 等.测井信息在前陆挤压区地应力分析中的应用.地质力学学报, 2005, 11(1):53-59. ZHAO J, PU W L, WANG G W, et al. Application of logging information in the analysis of the ground stress in the foreland compressive area. Journal of Geomechanics, 2005, 11(1):53-59.
[7] 蒋廷学, 卞晓冰, 苏瑗, 等.页岩可压性指数评价新方法及应用.石油钻探技术, 2014, 42(5):16-20. JIANG T X, BIAN X B, SU Y, et al. A new method for evaluating shale fracability index and its application. Petroleum Drilling Technique, 2014, 42(5):16-20.
[8] 车世琦.测井资料用于页岩岩相划分及识别——以涪陵气田五峰组-龙马溪组为例. 岩性油气藏, 2018, 30(1):121-132. CHE S Q. Shale lithofacies identification and classification by using logging data-a case of Wufeng-Longmaxi Formation in Fuling Gas Field, Sichuan Basin. Lithologic Reservoirs, 2018, 30(1):121-132.
[9] 赵金洲, 许文俊, 李勇明, 等.页岩气储层可压性评价新方法. 天然气地球科学, 2015, 26(6):1165-1172. ZHAO J Z, XU W J, LI Y M, et al. A new method for fracability evaluation of shale-gas reservoirs. Natural Gas Geoscience, 2015, 26(6):1165-1172.
[10] 袁俊亮, 邓金根, 张定宇, 等.页岩气储层可压裂性评价技术. 石油学报, 2013, 34(3):523-527. YUAN J L, DENG J G, ZHANG D Y, et al. Fracability evaluation of shale-gas reservoirs. Acta Petrolei Sinica, 2013, 34(3):523-527.
[11] 唐瑞江, 王玮, 王勇军, 等.元坝气田HF-1陆相深层页岩气井分段压裂技术及效果.天然气工业, 2014, 34(12):76-80. TANG R J, WANG W, WANG Y J, et al. Staged fracturing technologies for continental ultra-deep shale gas wells and their effects:a case study of well HF-1 in the Yuanba Gas Field, Sichuan Basin. Natural Gas Industry, 2014, 34(12):76-80.
[12] 姜浒, 刘书杰, 何保生, 等.定向射孔对水力压裂多裂缝形态的影响实验.天然气工业, 2014, 34(2):66-70. JIANG H, LIU S J, HE B S, et al. Experiments of the oriented perforating impact on the multi-fracture pattern of hydraulic fracturing treatment. Natural Gas Industry, 2014, 34(2):66-70.
[13] 张广清, 陈勉, 杨艳波.新井定向射孔转向压裂裂缝起裂与延伸机理研究.石油学报, 2008, 29(1):116-119. ZHANG G Q, CHEN M, YANG Y B. Study on initiation and propagation mechanism of fractures in oriented perforation of new wells. Acta Petrolei Sinica, 2008, 29(1):116-119.
[14] 王跃鹏, 刘向君, 梁利喜.页岩力学特性的层理效应及脆性预测.岩性油气藏, 2018, 30(4):149-160. WANG Y P, LIU X J, LIANG L X. Influences of bedding planes on mechanical properties and prediction method of brittleness index in shale. Lithologic Reservoirs, 2018, 30(4):149-160.
[15] 蒋建方, 杨劲舟, 刘光普. 压裂液基液黏度对压开地层的影响.油气井测试, 2013, 22(6):36-38. JIANG J F, YANG J Z, LIU G P. Influence of base fracturing fluid viscosity on breaking layer. Well Testing, 2013, 22(6):36-38.
[16] 范铁刚, 张广清.注液速率及压裂液黏度对煤层水力裂缝形态的影响. 中国石油大学学报(自然科学版), 2014, 38(4):117-123. FAN T G, ZHANG G Q. Influence of injection rate and fracturing fluid viscosity on hydraulic fracture geometry in coal. Journal of China University of Petroleum(Edition of Natural Science), 2014, 38(4):117-123.
[17] 王海涛, 蒋廷学, 卞晓冰, 等.深层页岩压裂工艺优化与现场试验.石油钻探技术, 2016, 44(2):76-81. WANG H T, JIANG T X, BIAN X B, et al. Optimization and field application of hydraulic fracturing techniques in deep shale reservoirs. Petroleum Drilling Techniques, 2016, 44(2):76-81.
[18] POPE C, PETERS B, BENTON T, et al. Haynesville shale-one operator's approach to well completions in this evolving play. SPE 125079, 2009.
[19] POPE C, PALISCH T, LOLON E, et al. Improving stimulation effectiveness:Field results in the Haynesville shale. SPE 134165, 2010.
[20] 尚希涛, 何顺利, 刘广峰, 等.水平井分段压裂破裂压力计算. 石油钻采工艺, 2009, 31(2):96-100. SHANG X T, HE S L, LIU G F, et al. Breakdown pressure calculation of staged fracturing for horizontal wells. Oil Drilling & Production Technology, 2009, 31(2):96-100.
[21] 金衍, 陈勉, 张旭东.利用测井资料预测深部地层岩石断裂韧性.岩石力学与工程学报, 2001, 20(4):454-456. JIN Y, CHEN M, ZHANG X D. Determination of fracture toughness for deep well rock with geophysical logging data. Chinese Journal of Rock Mechanic Sand Engineering, 2001, 20(4):454-456.
[22] 张健, 敬季昀, 王杏尊.利用小型压裂短时间压降数据快速获取储层参数的新方法. 岩性油气藏, 2018, 30(4):133-139. ZHANG J, JING J Y, WANG X Z. New method for obtaining reservoir parameters with a short time of pressure drop after mini-fracturing. Lithologic Reservoirs, 2018, 30(4):133-139.
[23] 侯冰, 陈勉, 程万, 等.页岩气储层变排量压裂的造缝机制. 岩土工程学报, 2014, 36(11):2149-2152. HOU B, CHEN M, CHENG W, et al. Fracture mechanism on shale gas reservoir fracturing with variable pump rate. Chinese Journal of Geotechnical Engineering, 2014, 36(11):2149-2152.
[24] 刘建坤, 蒋廷学, 万有余, 等.致密砂岩薄层压裂工艺技术研究及应用. 岩性油气藏, 2018, 30(1):165-172. LIU J K, JIANG T X, WAN Y Y, et al. Fracturing technology for thin layer in tight sandstone reservoir and its application. Lithologic Reservoirs, 2018, 30(1):165-172.
[25] 樊凤玲, 李宪文, 曹宗熊, 等.致密油层体积压裂排量优化方法.西安石油大学学报(自然科学版), 2014, 29(3):79-82. FAN F L, LI X W, CAO Z X, et al. Optimization of pumping rate for volume fracturing of tight reservoir. Journal of Xi'an Shiyou University(Natural Science Edition), 2014, 29(3):79-82.
[26] 魏斌, 陈平, 张冕, 等.变排量压裂技术及其现场应用.石油钻采工艺, 2000, 22(6):70-71. WEI B, CHEN P, ZHANG M, et al. Fracturing technology with alteration discharge capacity and it's field application. Oil Drilling & Production Technology, 2000, 22(6):70-71.
[27] 韩婧婧, 刘建, 武龙.鄂尔多斯盆地长6致密砂岩油藏压裂技术研究.岩性油气藏, 2017, 29(1):130-134. HAN J J, LIU J, WU L. Fracturing technology of Chang 6 tight sandstone reservoir in Ordos Basin. Lithologic Reservoirs, 2017, 29(1):130-134.
[1] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[2] XU Tianlu, WU Chengmei, ZHANG Jinfeng, CAO Aiqiong, ZHANG Teng. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(4): 35-43.
[3] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[4] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[5] YANG Zhaochen, LU Yingbo, YANG Guo, HUANG Chun, YI Dalin, JIA Song, WU Yongbin, WANG Guiqing. Pre-CO2 energy storage fracturing technology in horizontal wells for medium-deep heavy oil [J]. Lithologic Reservoirs, 2024, 36(1): 178-184.
[6] BU Xuqiang, WANG Laiyuan, ZHU Lianhua, HUANG Cheng, ZHU Xiuxiang. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(3): 152-160.
[7] FAN Caiwei, JIA Ru, LIU Bo, FU Xiaofei, HOU Jingxian, JIN Yejun. Caprock evaluation and its reservoir control of different accumulation systems in central depression zone of Yinggehai Basin [J]. Lithologic Reservoirs, 2023, 35(1): 36-48.
[8] YAN Jianping, LUO Jingchao, SHI Xuewen, ZHONG Guanghai, ZHENG Majia, HUANG Yi, TANG Hongming, HU Qinhong. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 60-71.
[9] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[10] CONG Ping, YAN Jianping, JING Cui, ZHANG Jiahao, TANG Hongming, WANG Jun, GENG Bin, WANG Min, CHAO Jing. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 177-188.
[11] LIU Bo, XU Gang, JI Yongjun, WEI Lulu, LIANG Xueli, HE Jinyu. Practice of volume fracturing and microseismic monitoring technology in horizontal wells of shale oil [J]. Lithologic Reservoirs, 2020, 32(6): 172-180.
[12] ZHANG Xiong, WANG Xiaozhi, GUO Tiankui, ZHAO Haiyang, LI Zhaomin, YANG Bin, QU Zhanqing. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield [J]. Lithologic Reservoirs, 2020, 32(5): 170-176.
[13] LUO Zhifeng, HUANG Jingyun, HE Tianshu, HAN Mingzhe, ZHANG Jintao. Extending regularity of fracture height by acid fracturing in carbonate reservoir: a case study of Qixia Formation in western Sichuan [J]. Lithologic Reservoirs, 2020, 32(2): 169-176.
[14] ZHAO Chaofeng, JIA Zhenjia, TIAN Jiantao, GAO Rongjin, ZHANG Wei, ZHAO Jianyu. Fracturing effect evaluation based on borehole microseismic monitoring method: a case study from well Y22 in Jilin exploration area [J]. Lithologic Reservoirs, 2020, 32(2): 161-168.
[15] SHI Wenyang, YAO Yuedong, CHENG Shiqing, GU Shaohua, SHI Zhiliang. Pressure transient analysis for separate-layer acid fracturing well of tidal flat fractured carbonate reservoirs in western Sichuan Basin [J]. Lithologic Reservoirs, 2020, 32(1): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: