Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (6): 60-71.doi: 10.12108/yxyqc.20220605

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin

YAN Jianping1,2, LUO Jingchao1,2, SHI Xuewen3, ZHONG Guanghai3, ZHENG Majia4, HUANG Yi5, TANG Hongming1, HU Qinhong6   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    3. Shale Gas Research Institute, PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, China;
    4. PetroChina Southwest Oil and Gas Field Company, Chengdu 610051, China;
    5. Southwest Branch, CNPC Logging Company Limited, Chongqing 400021, China;
    6. Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, TX 76019, USA
  • Received:2022-05-04 Revised:2022-06-07 Online:2022-11-01 Published:2022-11-09

Abstract: Based on the data of cores, electrical imaging logging and conventional logging,the fracture types and combination characteristics,fracture information extraction and fracture development models of the deep shale of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Luzhou area of southern Sichuan Basin were studied on the electrical imaging logging images,and the acoustic logging response of different fracture development models and their impact on the later fracturing stimulation were analyzed. The results show that:(1)With the increase of formation depth,the fracture dip angle and the complexity of structural fracture types gradually decrease of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,southern Sichuan Basin. The well target section near the strong tectonic activity zone shows obvious development of medium and high angle structural fractures.(2)According to the relationship between structural fractures and bedding development, the fracture development models in the study area can be divided into six types: mixed development of structural fractures and bedding, medium-density bedding,tight bedding, strong structural fractures and weak bedding,large-scale structural fractures, and dense type. Among them, the mixed development of structural fractures and bedding and the medium-density bedding are the preferred types of fracturing.(3)Curve L was introduced(σ = k/nk is a constant, σ is the average opening, n is the number of bedding), the range of k and n values can effectively characterize the relative development degree of structural fractures and bedding,so as to divide and identify different fracture development models in the coordinate system.(4)Different fracture development models have certain differences in the P-wave and S-wave time difference and rock mechanical properties. The P-wave time difference of the mixed development of structural fractures and bedding and the strong structural fracture and weak bedding is smaller than that of the medium-density bedding and the tight bedding. The shear strength of the medium-density bedding is lower than that of the tight bedding.

Key words: deep shale gas, fracture development model, electrical imaging logging, acoustic time difference, rock mechanics, Wufeng-Longmaxi Formation, Luzhou area, southern Sichuan Basin

CLC Number: 

  • TE122
[1] 邹才能, 赵群, 丛连铸, 等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1):1-14. ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14.
[2] 杜悦, 崔欢, 袁渊, 等. 天然裂缝对页岩气井产能的影响评价[J]. 天然气工业, 2021, 41(增刊1):118-123. DU Yue, CUI Huan, YUAN Yuan, et al. Influence of natural fractures on the productivity of shale gas wells[J]. Natural Gas Industry, 2021, 41(Suppl 1):118-123.
[3] 朱华, 杨光, 苑保国, 等. 四川盆地常规天然气地质条件、资源潜力及勘探方向[J]. 天然气地球科学, 2018, 29(10):1475- 1485. ZHU Hua, YANG Guang, YUAN Baoguo, et al. Geological conditions, resource potential and exploration direction of conventional gas in Sichuan Basin[J]. Natural Gas Geoscience, 2018, 29(10):1475-1485.
[4] 龙鹏宇, 张金川, 唐玄, 等. 泥页岩裂缝发育特征及其对页岩气勘探和开发的影响[J]. 天然气地球科学, 2011, 22(3):525- 532. LONG Pengyu, ZHANG Jinchuan, TANG Xuan, et al. Feature of muddy shale fissure and its effect for shale gas exploration and development[J]. Natural Gas Geoscience, 2011, 22(3):525- 532.
[5] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1):1-6. WANG Zhigang. Breakthrough of Fuling shale gas exploration and development and its inspiration[J]. Oil & Gas Geology, 2015, 36(1):1-6.
[6] 董敏, 郭伟, 张林炎, 等. 川南泸州地区五峰组-龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1):43-51. DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi formations in Luzhou area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1):43-51.
[7] 刘玉奎, 郭肖, 唐林, 等. 天然裂缝对气井产能影响研究[J]. 油气藏评价与开发, 2014, 4(6):25-28. LIU Yukui, GUO Xiao, TANG Lin, et al. Research on the influence of natural fracture on gas well productivity[J]. Reservoir Evaluation and Development, 2014, 4(6):25-28.
[8] 马军. 页岩裂缝成因及其对含气性影响:以渝东南地区阳春沟构造带五峰-龙马溪组为例[J]. 油气藏评价与开发, 2020, 10(3):126-134. MA Jun. Origin of shale fractures and its influence on gas-bearing properties:A case study of Wufeng-Longmaxi Formation in Yangchungou structural belt in southeast Chongqing[J]. Reservoir Evaluation and Development, 2020, 10(3):126-134.
[9] 王濡岳, 胡宗全, 刘敬寿, 等. 中国南方海相与陆相页岩裂缝发育特征及主控因素对比:以黔北岑巩地区下寒武统为例[J]. 石油与天然气地质, 2018, 39(4):631-640. WANG Ruyue, HU Zongquan, LIU Jingshou, et al. Comparative analysis of characteristics and controlling factors of fractures in marine and continental shales:A case study of the Lower Cambrian in Cengong area, northern Guizhou province[J]. Oil & Gas Geology, 2018, 39(4):631-640.
[10] 卞晓冰, 侯磊, 蒋廷学, 等. 深层页岩裂缝形态影响因素[J]. 岩性油气藏, 2019, 31(6):161-168. BIAN Xiaobing, HOU Lei, JIANG Tingxue, et al. Influencing factors of fracture geometry in deep shale gas wells[J]. Lithologic Reservoirs, 2019, 31(6):161-168.
[11] 王玉满, 黄金亮, 李新景, 等.四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J]. 天然气工业, 2015, 35(9):8-15. WANG Yuman, HUANG Jinliang, LI Xinjing, et al. Quantitative characterization of fracture and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(9):8-15.
[12] 管全中, 董大忠, 张华玲, 等. 基于改进的岩石物理模型表征页岩天然裂缝特征[J]. 天然气工业, 2021, 41(2):56-64. GUAN Quanzhong, DONG Dazhong, ZHANG Hualing, et al. Characterizing the characteristics of natural fractures in shale based on the modified petrophysical model[J]. Natural Gas Industry, 2021, 41(2):56-64.
[13] 李庆辉, 李少轩, 刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏, 2021, 28(3):130-138. LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fra-cturing stimulation[J]. Special Oil & Gas Reservoirs, 2021, 28(3):130-138.
[14] 闫建平, 言语, 司马立强, 等. 泥页岩储层裂缝特征及其与"五性" 之间的关系[J]. 岩性油气藏, 2015, 27(3):87-93. YAN Jianping, YAN Yu, SIMA Liqiang, et al. Relationship between fracture characteristics and"five-property"of shale reservoir[J]. Lithologic Reservoirs, 2015, 27(3):87-93.
[15] 熊涛. 黔北凤冈地区下寒武统牛蹄塘组页岩裂缝发育特征[J]. 中国煤炭地质, 2020, 32(8):38-43. XIONG Tao. Lower Cambrian Niutitang Formation shale fissure development features in Fenggang area, northern Guizhou[J]. Coal Geology of China, 2020, 32(8):38-43.
[16] 赖富强, 夏炜旭, 龚大建, 等. 基于小波高频属性的泥页岩裂缝测井识别方法研究[J]. 地球物理学进展, 2020, 35(1):124- 131. LAI Fuqiang, XIA Weixu, GONG Dajian, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J]. Progress in Geophysics(in Chinese), 2020,35(1):124-131.
[17] ZHANG Shaolong, YAN Jianping, CAI Jingong, et al. Fracture characteristics and logging identification of lacustrine shale in the Jiyang Depression, Bohai Bay Basin, eastern China[J]. Marine and Petroleum Geology, 2021, 132(10):1-15.
[18] LI Yong, WANG Zhuangsen, PAN Zhejun, et al. Pore structure and its fractal dimensions of transitional shale:A cross-section from east margin of the Ordos Basin, China[J]. Fuel, 2019, 241:417-431.
[19] ZHANG Shudong,REN Xingguo,LUO Li,et al. Loggingbased identification and evaluation of karst fractures in the eastern Right Bank of the Amu Darya River, Turkmenistan[J]. Natural Gas Industry B, 2019, 6(1):58-63.
[20] 王建君, 李井亮, 李林, 等. 基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5):122-132. WANG Jianjun, LI Jingliang, LI Lin, et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area[J]. Lithologic Reservoirs, 2020, 32(5):122-132.
[21] 商晓飞, 龙胜祥, 段太忠. 页岩气藏裂缝表征与建模技术应用现状及发展趋势[J]. 天然气地球科学, 2021, 32(2):215-232. SHANG Xiaofei, LONG Shengxiang, DUAN Taizhong. Current situation and development trend of fracture characterization and modeling techniques in shale gas reservoirs[J]. Natural Gas Geoscience, 2021, 32(2):215-232.
[22] 窦亮彬, 杨浩杰, XIAO Yingjian, 等. 页岩储层脆性评价分析及可压裂性定量评价新方法研究[J]. 地球物理学进展, 2021, 36(2):576-584. DOU Liangbin, YANG Haojie, XIAO Yingjian, et al. Probability study of formation brittleness and new quantitative evaluation of fracability for shale reservoirs[J]. Progress in Geophysics(in Chinese), 2021, 36(2):576-584.
[23] 周小金, 雍锐, 范宇, 等. 天然裂缝对页岩气水平井压裂的影响及工艺调整[J].中国石油勘探, 2020, 25(6):94-104. ZHOU Xiaojin, YONG Rui, FAN Yu, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J]. China Petroleum Exploration, 2020, 25(6):94-104.
[24] ZHAO Jinzhou, LI Yongming, WANG Song, et al. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir[J]. Natural Gas Industry B, 2014, 1(1):89- 95.
[25] MENG Qingfeng, HAO Fang, TIAN Jinqiang. Origins of nontectonic fractures in shale[J]. Earth-Science Reviews, 2021, 222:103825.
[26] 周彤, 王海波, 李凤霞, 等. 层理发育的页岩气储集层压裂裂缝扩展模拟[J]. 石油勘探与开发, 2020, 47(5):1039-1051. ZHOU Tong, WANG Haibo, LI Fengxia, et al. Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs[J]. Petroleum Exploration and Development, 2020, 47(5):1039-1051.
[27] 李国军, 王祥, 周嵩锴, 等. EMI成像测井在川西侏罗纪储层中的应用[J]. 断块油气田, 2004, 11(6):79-80. LI Guojun, WANG Xiang, ZHOU Songkai, et al. Application of the EMI image logging technique to the Jurassic reservoir of westSichuan[J]. Fault-Block Oil & Gas Field, 2004, 11(6):79-80.
[28] 曹宇, 张超谟, 张占松, 等. 裂缝型储层电成像测井响应三维数值模拟[J]. 岩性油气藏, 2014, 26(1):92-95. CAO Yu, ZHANG Chaomo, ZHANG Zhansong, et al. Threedimensional numerical simulation of electrical imaging logging response in fractured reservoir[J]. Lithologic Reservoirs, 2014, 26(1):92-95.
[29] 邹长春, 史謌. 一类正弦曲线的Hough变换快速检测方法[J]. 计算机工程与应用, 2002, 39(4):1-3. ZOU Changchun, SHI Ge. A fast approach to detect a kind of sinusoidal curves using hough transform[J]. Computer Engineering and Applications, 2002, 39(4):1-3.
[30] 闫建平, 蔡进功, 首祥云, 等. 成像测井图像中的裂缝信息智能拾取方法[J]. 天然气工业, 2009, 29(3):51-53. YAN Jianping, CAI Jingong, SHOU Xiangyun, et al. Intelligent picking method of the fracture information from imaging logging[J]. Natural Gas Industry, 2009, 29(3):51-53.
[1] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[2] BAO Hanyong, LIU Chao, GAN Yuqing, XUE Meng, LIU Shiqiang, ZENG Lianbo, MA Shijie, LUO Liang. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 14-22.
[3] ZHANG Tan, JIA Mengyao, SUN Yaxiong, DING Wenlong, SHI Siyu, FAN Xinyu, YAO Wei. Restoration and characteristics of karst paleogeomorphology of Middle Permian Maokou Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 111-120.
[4] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[5] ZHANG Menglin, LI Guoqin, HE Jia, HENG De. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
[6] DONG Min, GUO Wei, ZHANG Linyan, WU Zhonghai, MA Licheng, DONG Hui, FENG Xingqiang, YANG Yuehui. Characteristics of paleotectonic stress field and fractures of WufengLongmaxi Formation in Luzhou area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 43-51.
[7] YANG Zhanwei, JIANG Zhenxue, LIANG Zhikai, WU Wei, WANG Junxia, GONG Houjian, LI Weibang, SU Zhanfei, HAO Mianzhu. Evaluation of shale TOC content based on two machine learning methods: A case study of Wufeng-Longmaxi Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 130-138.
[8] LI Xiaojia, DENG Bin, LIU Shugen, WU Juan, ZHOU Zheng, JIAO Kun. Multi-stage fluid activity characteristics of Wufeng-Longmaxi Formation in Ningxi area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(6): 135-144.
[9] ZHANG Bing, TAN G Shuheng, XI Zhaodong, LIN Donglin, YE Yapei. Biostratigraphic characteristics and exploration significance of Wufeng-Longmaxi Formation in northwestern Hunan [J]. Lithologic Reservoirs, 2021, 33(5): 11-21.
[10] CONG Ping, YAN Jianping, JING Cui, ZHANG Jiahao, TANG Hongming, WANG Jun, GENG Bin, WANG Min, CHAO Jing. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 177-188.
[11] YANG Yang, SHI Wanzhong, ZHANG Xiaoming, WANG Ren, XU Xiaofeng, LIU Yuzuo, BAI Luheng, CAO Shenting, FENG Qian. Identification method of shale lithofacies by logging curves: a case study from Wufeng-Longmaxi Formation in Jiaoshiba area,SW China [J]. Lithologic Reservoirs, 2021, 33(2): 135-146.
[12] REN Jie. Conventional logging evaluation method for carbonate fractured reservoir [J]. Lithologic Reservoirs, 2020, 32(6): 129-137.
[13] WU Wei, SHAO Guanghui, GUI Pengfei, ZHANG Qian, WEI Haoyuan, LI Guoli, REN Panliang. Fracture effectiveness evaluation and reservoir quality classification based on electrical imaging data: a case study of Cretaceous in Yaerxia Oilfield [J]. Lithologic Reservoirs, 2019, 31(6): 102-108.
[14] ZHENG Shanshan, LIU Luofu, WANG Yang, LUO Zehua, WANG Ximeng, SHENG Yue, XU Tong, WANG Bohan. Characteristics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin [J]. Lithologic Reservoirs, 2019, 31(3): 55-65.
[15] HE Guisong, HE Xipeng, GAO Yuqiao, ZHANG Peixian, WAN Jingya, HUANG Xiaozhen. Analysis of accumulation conditions of three sets of marine shale gas in southern China [J]. Lithologic Reservoirs, 2019, 31(1): 57-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: