Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (1): 130-138.doi: 10.12108/yxyqc.20220113

• EXPLORATION TECHNOLOGY • Previous Articles     Next Articles

Evaluation of shale TOC content based on two machine learning methods: A case study of Wufeng-Longmaxi Formation in southern Sichuan Basin

YANG Zhanwei1,2, JIANG Zhenxue1,2, LIANG Zhikai1,2, WU Wei3, WANG Junxia1,2, GONG Houjian1,2, LI Weibang1,2, SU Zhanfei1,2, HAO Mianzhu1,2   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. Research Institute of Unconventional Oil and Gas Science and Technology, China University of Petroleum(Beijing), Beijing 102249, China;
    3. Shale Gas Research Institute, PetroChina Southwest Oil & Gas Field Company, Chengdu 610051, China;
    4. College of Science, China University of Petroleum(Beijing), Beijing 102249, China
  • Received:2021-06-17 Revised:2021-08-02 Published:2022-01-21

Abstract: In order to establish a reasonable and accurate prediction method of shale total organic carbon(TOC) content of Wufeng-Longmaxi Formation in southern Sichuan Basin,the principal component analysis method was used to preprocess the logging curves and the measured TOC content data of 17 wells in Changning and Luzhou areas. Two TOC content prediction models were established based on BP neural network and gradient boosting decision tree(GBDT),and compared with the traditional TOC content prediction methods. The results show that:(1) The accuracy of the two models is higher than that of the traditional methods,and the consistence between the predicted results and the actual values can meet the requirements.(2) Compared with BP neural network model, GBDT has higher prediction accuracy,and the root mean square error is only 0.0387. The TOC content prediction model established by GBDT has the characteristics of low cost,high efficiency and continuity,and can be used to predict the TOC content of the target layer quickly and accurately. This achievement can provide effective technical support for improving the efficiency of shale oil and gas exploration and development.

Key words: principal component analysis, BP neural network, gradient boosting decision tree, Wufeng-Longmaxi Formation, southern Sichuan Basin

CLC Number: 

  • TE122
[1] PASSEY Q R, CREANEY S, KULLA J B, et al. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 1990, 74(12):1777-1794.
[2] 赵万金, 高海燕, 闫国亮, 等. 基于最优化估算和贝叶斯统计的TOC预测技术.岩性油气藏, 2020, 32(1):86-93. ZHAO W J, GAO H Y, YAN G L, et al. TOC prediction technology based on optimal estimation and Bayesian statistics. Lithologic Reservoirs, 2020, 32(1):86-93.
[3] 严伟, 刘帅, 冯明刚, 等. 四川盆地丁山区块页岩气储层关键参数测井评价方法. 岩性油气藏, 2019, 31(3):95-104. YAN W, LIU S, FENG M G, et al. Well logging evaluation methods of key parameters for shale gas reservoir in Dingshan block, Sichuan Basin. Lithologic Reservoirs, 2019, 31(3):95104.
[4] 杜江民, 张小莉, 钟高润, 等. 致密油烃源岩有机碳含量测井评价方法优选及应用:以鄂尔多斯盆地延长组长7段烃源岩为例. 地球物理学进展, 2016, 31(6):2526-2533. DU J M, ZHANG X L, ZHONG G R, et al. Analysis on the optimization and application of well logs identification methods for organic carbon content in source rocks of the tight oil:Illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin. Progress in Geophysics, 2016, 31(6):2526-2533.
[5] SCHMOKER J W. Determination of organic-matter content of Appalachian Devonian Shales from gamma-ray logs. AAPG Bulletin, 1981, 65(7):1285-1298.
[6] HESTER T C, SCHMOKER J W. Determination of organic content from formation-density logs, Devonian-Mississippian Woodford Shale, Anadarko Basin, Oklahoma. US Geological Survey, 1987.
[7] 陈浩, 刘洛夫, 窦文超, 等. 银额盆地居延海坳陷烃源岩TOC测井预测方法优选及应用. 地球物理学进展, 2019, 34(3):1017-1024. CHEN H, LIU L F, DOU W C, et al. Optimal selection and application of prediction methods for TOC of source rocks based on logging data in Juyanhai Depression, Yingen-Ejin Banner Basin. Progress in Geophysics, 2019, 34(3):1017-1024.
[8] 朱振宇, 刘洪, 李幼铭. ΔlogR技术在烃源岩识别中的应用与分析.地球物理学进展, 2003, 18(4):647-649. ZHU Z Y, LIU H, LI Y M. The analysis and application of ΔlogR method in the source rock's identification. Progress in Geophysics, 2003, 18(4):647-649.
[9] 王祥, 马劲风, 张新涛, 等. 一种考虑密度因素的广义ΔlogR法预测总有机碳含量:以渤中凹陷西南部陆相深层烃源岩为例. 地球物理学进展, 2020, 35(4):1471-1480. WANG X, MA J F, ZHANG X T, et al. A generalized ΔlogR method for predicting total organic carbon content considering density factor:A case study of deep continental source rocks in southwest Bozhong Sag. Progress in Geophysics, 2020, 35(4):1471-1480.
[10] 郭泽清, 孙平, 刘卫红. 利用ΔlogR技术计算柴达木盆地三湖地区第四系有机碳. 地球物理学进展, 2012, 27(2):626-633. GUO Z Q, SUN P, LIU W H. Calculation of quaternary organic carbon in Sanhu area of Qaidam Basin using ΔlogR technology. Progress in Geophysics, 2012, 27(2):626-633.
[11] 刘超, 印长海, 卢双舫.变系数ΔlogR烃源岩测井评价技术关键参数厘定方法及应用. 天然气地球科学, 2015, 26(10):1925-1931. LIU C, YIN C H, LU S F. Predicting key parameters for variablecoefficient ΔlogR logging technique and its application in source rocks evaluation. Natural Gas Geoscience, 2015, 26(10):19251931.
[12] 叶绍泽, 曹俊兴, 吴施楷, 等. 基于深度置信网络的总有机碳含量预测方法. 地球物理学进展, 2018, 33(6):304-311. YE S Z, CAO J X, WU S K, et al. Prediction method of total organic carbon content based on deep belief nets. Progress in Geophysics, 2018, 33(6):304-311.
[13] 杨洋, 石万忠, 张晓明, 等. 页岩岩相的测井曲线识别方法:以焦石坝地区五峰组-龙马溪组为例.岩性油气藏, 2021, 33(2):135-146. YANG Y, SHI W Z, ZHANG X M, et al. Identification method of shale lithofacies by logging curves:A case study from WufengLongmaxi Formation in Jiaoshiba area, SW China. Lithologic Reservoirs, 2021, 33(2):135-146.
[14] 刘跃杰, 刘书强, 马强, 等. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用.岩性油气藏, 2019, 31(4):101111. LIU Y J, LIU S Q, MA Q, et al. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin. Lithologic Reservoirs, 2019, 31(4):101-111.
[15] 朱振宇, 王贵文, 朱广宇. 人工神经网络法在烃源岩测井评价中的应用. 地球物理学进展, 2002, 17(1):137-140. ZHU Z Y, WANG G W, ZHU G Y. The application of artificial neural network to the source rock's evaluation. Progress in Geophysics, 2002, 17(1):137-140.
[16] DE S, VIKRAM V K, SENGUPTA D. Application of support vector regression analysis to estimate total organic carbon content of Cambay shale in Cambay Basin, India:A case study. Petroleum Science and Technology, 2019, 37(10):1155-1164.
[17] SHI X, WANG J, LIU G, et al. Application of extreme learning machine and neural networks in total organic carbon content prediction in organic shale with wire line logs. Journal of Natural Gas Science and Engineering, 2016, 33:687-702.
[18] RUI J, ZHANG H, REN Q, et al. TOC content prediction based on a combined Gaussian process regression model. Marine and Petroleum Geology, 2020, 118:104429.
[19] 王贵文, 朱振宇, 朱广宇. 烃源岩测井识别与评价方法研究. 石油勘探与开发, 2002, 29(4):50-52. WANG G W, ZHU Z Y, ZHU G Y. Logging identification and evaluation of Cambrian-Ordovician source rocks in syneclise of Tarim Basin. Petroleum Exploration and Development, 2002, 29(4):50-52.
[20] 蒋德鑫, 姜正龙, 张贺, 等. 烃源岩总有机碳含量测井预测模型探讨:以陆丰凹陷文昌组为例. 岩性油气藏, 2019, 31(6):112-120. JIANG D X, JIANG Z L, ZHANG H, et al. Well logging prediction models of TOC content in source rocks:A case of Wenchang Formation in Lufeng Sag. Lithologic Reservoirs, 2019, 31(6):112-120.
[21] JOHNSON L M, REZAEE R, KADKHODAIE A, et al. Geochemical property modelling of a potential shale reservoir in the Canning Basin(western Australia), using artificial neural networks and geostatistical tools. Computers & Geosciences, 2018, 120:73-81.
[22] 高乔, 王兴志, 朱逸青, 等. 川南地区龙马溪组元素地球化学特征及有机质富集主控因素.岩性油气藏, 2019, 31(4):72-84. GAO Q, WANG X Z, ZHU Y Q, et al. Elemental geochemical characteristics and main controlling factors of organic matter enrichment of Longmaxi Formation in southern Sichuan. Lithologic Reservoirs, 2019, 31(4):72-84.
[23] 刘文平, 周政, 吴娟, 等. 川南盆地长宁页岩气田五峰组-龙马溪组成藏动力学过程及其意义. 南京大学学报(自然科学), 2020, 56(3):393-404. LIU W P, ZHOU Z, WU J, et al. Hydrocarbon generation and shale gas accumulation in the Wufeng-Longmaxi formations, Changning shale-gas field, southern Sichuan Basin. Journal of Nanjing University(Natural Science), 2020, 56(3):393-404.
[24] 黄利文.基于理想点的主成分分析法在综合评价中的应用. 统计与决策, 2021, 37(10):184-188. HUANG L W. Application of principal component analysis based on ideal point in comprehensive evaluation. Statistics and Decision, 2021, 37(10):184-188.
[25] 黄继盛, 姚康, 束洪春, 等. 基于主成分分析和SVM模型的配电网故障选线方法.昆明理工大学学报(自然科学版), 2021, 46(4):1-12. HUANG J S, YAO K, SHU H C, et al. Method of fault line selection in distribution network based on principal component analysis and SVM model. Journal of Kunming University of Science and Technology(Natural Science Edition), 2021, 46(4):1-12.
[26] 张继伟.基于主成分分析的页岩油有利区评价:以仪陇-平昌地区大安寨段为例.断块油气田, 2021, 28(1):28-32. ZHANG J W. Evaluation of favorable areas of shale oil based on principal component analysis:Taking Daanzhai member of Yilong-Pingchang area as an example. Fault Block Oil and Gas Field, 2021, 28(1):28-32.
[27] 周游, 张广智, 高刚, 等. 核主成分分析法在测井浊积岩岩性识别中的应用.石油地球物理勘探, 2019, 54(3):667-675. ZHOU Y, ZHANG G Z, GAO G, et al. Application of kernel principal component analysis in well logging turbidite lithology identification. Oil Geophysical Prospecting, 2019, 54(3):667675.
[28] 曲彦胜, 钟宁宁, 刘岩, 等. 烃源岩有机质丰度的测井计算方法及影响因素探讨. 岩性油气藏, 2011, 23(2):80-84. QU Y S, ZHONG N N, LIU Y, et al. Using logging methods to calculate organic matter abundance of source rocks and its influencing factors. Lithologic Reservoirs, 2011, 23(2):80-84.
[29] 周瑾, 白洪溪, 崔健, 等. 基于电磁参数的BP神经网络模型在页岩气储层预测中的应用研究.物探化探计算技术, 2020, 42(1):76-83. ZHOU J, BAI H X, CUI J, et al. Application of BP neural network model based on electromagnetic parameters in shale gas reservoir prediction. Geophysical and Geochemical Calculation Technology, 2020, 42(1):76-83.
[30] 袁颖, 谭丁, 于少将, 等. 基于贝叶斯正则化改进BP神经网络的页岩气有机碳含量预测模型.地质与勘探, 2019, 55(4):1082-1091. YUAN Y, TAN D, YU S J, et al. A Prediction model for shale gas organic carbon content based on improved BP neural network using Bayesian regularization. Geology and Exploration, 2019, 55(4):1082-1091.
[31] 朱红, 孔德群, 钱旭.基于ATD-BP神经网络的页岩气产量预测方法.科学技术与工程, 2017, 17(31):128-132. ZHU H, KONG D Q, QIAN X. Shale gas production prediction method based on adaptive threshold denoising BP Neural Network. Science Technology and Engineering, 2017, 17(31):128132.
[32] 谷宇峰, 张道勇, 鲍志东. PSO-GBDT识别致密砂岩储集层岩性研究:以姬塬油田西部长4+5段为例. 矿物岩石地球化学通报, 2021, 40(3):624-634. GU Y F, ZHANG D Y, BAO Z D. Lithology prediction of tight sandstone reservoirs using the PSO-GBDT:A case study of the Chang 4+5 members in the western Jiyuan Oilfield. Mineral and Petrochemical Bulletin, 2021, 40(3):624-634.
[33] 谷宇峰, 张道勇, 鲍志东, 等. 利用梯度提升决策树(GBDT)预测渗透率:以姬塬油田西部长4+5段致密砂岩储层为例. 地球物理学进展, 2021, 36(2):585-594. GU Y F, ZHANG D Y, BAO Z D, et al. Permeability prediction using Gradient Boosting Decision Tree(GBDT):A case study of tight sandstone reservoirs of member of Chang 4+5 in western Jiyuan Oilfield. Progress in Geophysics, 2021, 36(2):585-594.
[34] 谷宇峰, 张道勇, 鲍志东, 等.利用GBDT识别致密砂岩储层岩性.地球物理学进展, 2021, 36(5):1956-1965. GU Y F, ZHANG D Y, BAO Z D, et al. Identification of tight sandstone reservoir lithology using GBDT. Progress in Geophysics, 2021, 36(5):1956-1965.
[35] 尹超英, 邵春福, 黄兆国, 等.基于梯度决策树的多尺度建成环境对小汽车拥有的影响.吉林大学学报(工学版):1-8[202111-02].https:?doi.org/10.13229/j.cnki.jdxbgxb20200844. YIN C Y, SHAO C F, HUANG Z G, et al. Investigating the influences of multi-scale built environment on car ownership behavior based on gradient boosting decision trees. Journal of Jilin University(Engineering Edition):1-8[2021-11-02].https:?doi. org/10.13229/j.cnki.jdxbgxb20200844.
[1] LI Xiaojia, DENG Bin, LIU Shugen, WU Juan, ZHOU Zheng, JIAO Kun. Multi-stage fluid activity characteristics of Wufeng-Longmaxi Formation in Ningxi area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(6): 135-144.
[2] ZHANG Bing, TAN G Shuheng, XI Zhaodong, LIN Donglin, YE Yapei. Biostratigraphic characteristics and exploration significance of Wufeng-Longmaxi Formation in northwestern Hunan [J]. Lithologic Reservoirs, 2021, 33(5): 11-21.
[3] CONG Ping, YAN Jianping, JING Cui, ZHANG Jiahao, TANG Hongming, WANG Jun, GENG Bin, WANG Min, CHAO Jing. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(3): 177-188.
[4] YANG Yang, SHI Wanzhong, ZHANG Xiaoming, WANG Ren, XU Xiaofeng, LIU Yuzuo, BAI Luheng, CAO Shenting, FENG Qian. Identification method of shale lithofacies by logging curves: a case study from Wufeng-Longmaxi Formation in Jiaoshiba area,SW China [J]. Lithologic Reservoirs, 2021, 33(2): 135-146.
[5] LIU Yuejie, LIU Shuqiang, MA Qiang, YAO Zongsen, SHE Jiachao. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin [J]. Lithologic Reservoirs, 2019, 31(4): 101-111.
[6] ZHENG Shanshan, LIU Luofu, WANG Yang, LUO Zehua, WANG Ximeng, SHENG Yue, XU Tong, WANG Bohan. Characteristics of microscopic pore structures and main controlling factors of Wufeng-Longmaxi Formation shale in southern Sichuan Basin [J]. Lithologic Reservoirs, 2019, 31(3): 55-65.
[7] HE Guisong, HE Xipeng, GAO Yuqiao, ZHANG Peixian, WAN Jingya, HUANG Xiaozhen. Analysis of accumulation conditions of three sets of marine shale gas in southern China [J]. Lithologic Reservoirs, 2019, 31(1): 57-68.
[8] CHEN Jukai, ZHU Yanming, CUI Zhaobang, ZHANG Chuanghui. Pore structure and fractal characteristics of Longmaxi shale in southern Sichuan Basin [J]. Lithologic Reservoirs, 2018, 30(1): 55-62.
[9] WANG Peng, SHEN Zhongmin, HE Chongkang, CHEN Gang, PAN Shulin, WANG Junze. Geochemical characteristics and accumulation process of natural gas of Xujiahe Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2017, 29(5): 19-27.
[10] MAZheng, ZHANG Chunlei, GAO Shichen. Lithology identification based on principal component analysis and fuzzy recognition [J]. Lithologic Reservoirs, 2017, 29(5): 127-133.
[11] Zhou Wen, Xu Hao, Yu Qian, Xie Runcheng, Deng Kun. Shale gas-bearing property differences and their genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and surrounding areas [J]. Lithologic Reservoirs, 2016, 28(5): 18-25.
[12] Zhu Yiqing, Wang Xingzhi, Feng Mingyou, Li Ke. Lithofacies classification and its relationship with reservoir of the Lower Paleozoic Wufeng-Longmaxi Formation in the eastern Sichuan Basin [J]. Lithologic Reservoirs, 2016, 28(5): 59-66.
[13] Y ANG Zhe, ZHONG Dakang, DU Benqiang, L I Qirong, ZHU Haihua, ZHOU Yuzhe. Characteristics and controlling factors of low porosity and low permeability reservoir of the second member of Jialingjiang Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2014, 26(4): 81-87.
[14] X IONG Lei,ZHANG Chaomo,ZHANG Chong,X IE Bing,DING Yi,HAN Shumin. Research on logging evaluation method of TOC content of shale gas reservoir in A area [J]. Lithologic Reservoirs, 2014, 26(3): 74-78.
[15] WANG Xiaoguang. Application of self-adaptive BP neural network to the prediction of shear wave velocity [J]. Lithologic Reservoirs, 2013, 25(5): 86-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MA Zhongliang, ZENG Jianhui, ZHANG Shanwen, WANG Yongshi,WANG Hongyu, LIU Huimin. Migration and accumulation mechanism of sand lens reservoirs and its main controlling factors[J]. Lithologic Reservoirs, 2008, 20(1): 69 -74 .
[2] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[3] ZHENG Leiqing. Application of comprehensive identification method in low-resistivity hydrocarbon reservoir exploration[J]. Lithologic Reservoirs, 2007, 19(2): 71 -75 .
[4] HUANG Sijing,HUANG Peipei,WANG Qingdong,LIU Haonian,WU Meng,ZOU Mingliang. The significance of cementation in porosity preservation in deep-buried sandstones[J]. Lithologic Reservoirs, 2007, 19(3): 7 -13 .
[5] YANG Hua,LIU Xianyang,ZHANG Caili,HAN Tianyou,HUI Xiao. The main controlling factors and distribution of low permeability lithologic reservoirs of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(3): 1 -6 .
[6] LI Chuanliang. Horizontal wells are not suitable for bottom water reservoir development[J]. Lithologic Reservoirs, 2007, 19(3): 120 -122 .
[7] LI Chuanliang. A theoretical formula of stress sensitivity index with compressibility of rock[J]. Lithologic Reservoirs, 2007, 19(4): 95 -98 .
[8] ZHANG Huquan,WEI Pingsheng,PAN Jianguo,SUN Dong,WANG Hongbin. Carbonate seismic reservoir[J]. Lithologic Reservoirs, 2010, 22(2): 14 -17 .
[9] ZHAO Jun, HAI Chuan, ZHANG Chengsen. Application of log data in reef flat reservoir description in Tazhong No.1 slope break[J]. Lithologic Reservoirs, 2008, 20(2): 86 -90 .
[10] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
TRENDMD: