Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (3): 177-188.doi: 10.12108/yxyqc.20210319

• PETROLEUM ENGINEERING • Previous Articles    

Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir: A case study from Wufeng Formation and Longmaxi Formation in X area, southern Sichuan Basin

CONG Ping1,2, YAN Jianping1,2,3, JING Cui4, ZHANG Jiahao4, TANG Hongming1,2, WANG Jun5, GENG Bin5, WANG Min5, CHAO Jing5   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China;
    4. Sichuan Changning Natural Gas Development Company Limited, Chengdu 610051, China;
    5. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying 257015, Shandong, China
  • Received:2020-07-09 Revised:2020-11-15 Published:2021-06-04

Abstract: Shale gas reservoir is characterized by tightness and strong heterogeneity,so fracturing is needed to increase production and transformation. Therefore,the evaluation of shale fracturing grade and its distribution rule are of great guiding significance for the fracturing design. The shale formation of Wufeng Formation-Longyi1 submember in X area,southern Sichuan Basin,was taken as the research object,based on the data of core test, logging and mud logging,the indexes reflecting shale fracturing were qualitatively analyzed,and five sensitive parameters brittleness index,Poisson's ratio,Young's modulus,tensile strength and horizontal stress difference were extracted. The weight of each parameter was obtained by analytic hierarchy process to establish the quantitative and comprehensive fracturing coefficient Icr. Combined with the production data of shale gas wells,three fracturing grades Ⅰ,Ⅱ and Ⅲ were divided. Furthermore,the evaluation of fracturing grade of multiple wells and the correlation of well-connected profiles were carried out,and the formation thickness ratios of fracturing grades Ⅰ and Ⅱ were counted to analyze the distribution features of the fracturing performance in the plane. The results show that when Icr ≥0.59,the fracturing grade of shale gas reservoir is grade Ⅰ,and its fracturing performance is the best. The fracturing profile show that the grade I interval in the sublayers 1 and 2 of Wufeng Formation-Longyi1 submember accounts for a large proportion,and core description also shows that the natural fractures in this interval are the most developed and are the most suitable favorable intervals for shale gas fracturing development. The plan indicates that the areas with intervals of grade I fracturing performance with a thickness ratio of 0.8-0.9 are mainly distributed in N201,N209,N203,N208 and N211 well areas. The research results can pro-vide a key basis for effective development of X area shale gas horizontal wells.

Key words: shale gas, fracturing property, logging evaluation, brittleness index, analytic hierarchy process, southern Sichuan Basin

CLC Number: 

  • P631.8
[1] 徐国盛, 徐志星, 段亮, 等. 页岩气研究现状及发展趋势. 成都理工大学学报(自然科学版), 2011, 38(6):603-610. XU G S, XU Z X, DUAN L, et al. Status and development tendency of shale gas research. Journal of Chengdu University of Technology(Science & Technology Edition), 2011, 38(6):603-610.
[2] MULLEN M, ROUNDTREE R, BARREE B. A composite determination of mechanical rock properties for stimulation of mechanical rock properties for stimulation design. SPE 108139, 2007.
[3] RICKMAN R, MULLEN M, PETRE E, et al. A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett Shale. SPE 115258, 2008.
[4] JARVIE D, HILL R J, RUBLE T E, et al. Unconventional shale gas systems:the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 2007, 91(4):475-499.
[5] ENDERLIN M, ALSLEBEN H, BREVER J A. Predicting fracability in shale reservoirs. AAPG 40783, 2011.
[6] 唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法. 地学前缘, 2012, 19(5):356-363. TANG Y, XING Y, LI L Z, et al. Influence factors and evaluation methods of the gas shale fracability. Earth Science Frontiers, 2012, 19(5):356-363.
[7] 王松, 杨洪志, 赵金洲, 等. 页岩气井可压裂性综合评价方法研究及应用. 油气地质与采收率, 2016, 23(2):121-126. WANG S, YANG H Z, ZHAO J Z, et al. Research and application of comprehensive evaluation on fracability of shale gas wells. Petroleum Geology and Recovery Efficiency, 2016, 23(2):121-126.
[8] 王鹏, 纪友亮, 潘仁芳, 等. 页岩脆性的综合评价方法:以四川盆地W区下志留统龙马溪组为例. 天然气工业, 2013, 33(12):48-53. WANG P, JI Y L, PAN R F, et al. A comprehensive evaluation methodology of shale brittleness:A case study from the Lower Silurian Longmaxi Fm in block W, Sichuan Basin. Natural Gas Industry, 2013, 33(12):48-53.
[9] 赵金洲, 任岚, 沈骋, 等. 页岩气储层缝网压裂理论与技术研究新进展. 天然气工业, 2018, 38(3):1-13. ZHAO J Z, REN L, SHEN C, et al. Lastest research progresses in network fracturing theories and technologies for shale gas reservoirs. Natural Gas Industry, 2018, 38(3):1-13.
[10] 黄金亮,邹才能,李建忠,等. 川南志留系龙马溪组页岩气形成条件与有利区分析. 煤炭学报, 2012, 37(5):782-787. HUANG J L, ZOU C N, LI J Z, et al. Shale gas accumulation condition and favorable zones of Silurian Longmaxi Formation in south Sichuan Basin, China. Journal of China Coal Society, 2012, 37(5):782-787.
[11] 张译戈. 长宁地区页岩气测井精细解释方法研究.成都:西南石油大学, 2014. ZHANG Y G. Shale gas fine logging interpretation method in Changning area. Chengdu:Southwest Petroleum University, 2014.
[12] 刘璐, 范翔宇, 桑琴, 等. 基于测井资料识别页岩气储层的方法优选:以四川盆地长宁区块下志留统龙马溪组为例. 天然气勘探与开发, 2017, 40(1):38-43. LIU L, FAN X Y, SANG Q, et al. Selection of logging-based shale gas reservoir identification methods:A case study on Lower Silurian Longmaxi Fm in Changning block, the Sichuan Basin. Natural Gas Exploration and Development, 2017, 40(1):38-43.
[13] 赵圣贤, 杨跃明, 张鉴, 等. 四川盆地下志留统龙马溪组页岩小层划分与储层精细对比. 天然气地球科学, 2016, 27(3):470-487. ZHAO S X, YANG Y M, ZHANG J, et al. Micro-layers division and fine reservoirs contrast of Lower Silurian Longmaxi Formation shale, Sichuan Basin, SW China. Natural Gas Geoscience, 2016, 27(3):470-487.
[14] 梁豪. 页岩储层岩石脆性破裂机理及评价方法. 成都:西南石油大学, 2014. LIANG H. Brittle fracture mechanism and evaluation method of shale reservoir rock. Chengdu:Southwest Petroleum University, 2014.
[15] CIPOLLA C, LOLON E, ERDLE J, et al. Reservoir modeling in shale gas reservoirs. SPE Reservoir Evaluation and Engineering, 2010, 13(4):638-653.
[16] 孙建孟, 韩志磊, 秦瑞宝, 等. 致密气储层可压裂性测井评价方法. 石油学报, 2015, 36(1):74-80. SUN J M, HAN Z L, QIN R B, et al. Log evaluation method of fracturing performance in tight gas reservoir. Acta Petrolei Sinica, 2015, 36(1):74-80.
[17] 颜磊, 何传亮, 侯克均. 基于成像矿物谱的页岩气储层脆性指数计算方法:以四川盆地南部下志留统龙马溪组为例. 天然气工业, 2019, 39(2):54-60. YAN L, HE C L, HOU K J. A calculation method for brittleness index of shale gas reservoirs based on the imaging spectroscopy mineral maps:A case study of the Lower Silurian Longmaxi shale gas reservoir in the southern Sichuan Basin. Natural Gas Industry, 2019, 39(2):54-60.
[18] 张晋言, 孙建孟. 利用测井资料评价泥页岩油气"五性" 指标. 测井技术, 2012, 36(2):146-153. ZHANG J Y, SUN J M. Log evaluation on shale hydrocarbon reservoir. Well Logging Technology, 2012, 36(2):146-153.
[19] 赖富强, 罗涵, 覃栋优, 等.基于层次分析法的页岩气储层可压裂性评价研究.特种油气藏, 2018, 25(3):154-159. LAI F Q, LUO H, QIN D Y, et al. Crushability evaluation of shale gas reservoir based on analytic hierarchy process. Special Oil and Gas Reservoir, 2018, 25(3):154-159.
[20] 任岩, 曹宏, 姚逢昌, 等. 岩石脆性评价方法进展. 石油地球物理勘探, 2018, 53(4):875-886. REN Y, CAO H, YAO F C, et al. Development of rock brittleness evaluation method. Oil Geophysical Prospecting, 2018, 53(4):875-886.
[21] 王春权, 王成虎, 江英豪, 等. 基于不同岩石抗拉强度值确定最大水平主应力的对比分析. 地下空间与工程学报, 2017, 13(1):41-47. WANG C Q, WANG C H, JIANG Y H, et al. Comparative analysis of determining the maximum horizontal principal stress based on different tensile strength of rocks. Chinese Journal of Underground Space and Engineering, 2017, 13(1):41-47.
[22] 闫萍, 孙建孟, 苏远大, 等. 利用测井资料计算新疆迪那气田地应力. 新疆石油地质, 2006, 27(5):611-614. YAN P, SUN J M, SU Y D, et al. The earth stress calculation using well logging data in Dina gas field of Xinjiang. Xinjiang Petroleum Geology, 2006, 27(5):611-614.
[23] 余汪根. 页岩水平井起裂及压裂缝网形成机理研究. 成都:西南石油大学, 2016. YU W G. Study on fracture initiation and fracture network formation mechanism of horizontal shale wells. Chengdu:Southwest Petroleum University, 2016.
[24] BLANTON T L. An experimental study of interaction between hydraulically induced and pre-existing fractures. SPE 10847, 1982.
[25] 张少龙, 闫建平, 唐洪明, 等. 致密碎屑岩气藏可压裂性测井评价方法及应用:以松辽盆地王府断陷登娄库组为例. 岩性油气藏, 2018, 30(3):133-142. ZHANG S L, YAN J P, TANG H M, et al. Logging fracturing evaluation for tight clastic gas reservoir and its application:A case from Denglouku Formation in Wangfu fault depression, Songliao Basin. Lithologic Reservoirs, 2018, 30(3):133-142.
[26] 李飒爽. 基于层次分析法的页岩可压性评价方法. 成都:西南石油大学, 2016. LI S S. Shale compressibility evaluation method based on APH. Chengdu:Southwest Petroleum University, 2016.
[27] 司马立强, 温丹妮, 闫建平, 等. 泥页岩储层可压裂性分析及压裂高度预测方法研究. 测井技术, 2015, 39(5):622-639. SIMA L Q, WEN D N, YAN J P, et al. Fracturing hierarchy analysis and fracturing height prediction method in shale reservoirs. Well Logging Technology, 2015, 39(5):622-639.
[28] 邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究. 数学的实践与认识, 2012, 42(7):93-100. DENG X, LI J M, ZENG H J, et al. Research on computation methods of AHP wight vector and its applications. Mathematics in Practice and Theory, 2012, 42(7):93-100.
[29] 王曦蒙,刘洛夫,汪洋,等. 川南地区龙马溪组页岩岩相对页岩孔隙空间的控制. 石油学报, 2019, 40(10):1192-1201. WANG X M, LIU L F, WANG Y, et al. Control of lithofacies on pore space of shale from Longmaxi Formation, southern Sichuan Basin. Acta Petrolei Sinica, 2019, 40(10):1192-1201.
[30] 史洪亮, 熊亮, 董晓霞, 等. 川南地区五峰组-龙马溪组下段页岩岩相特征及演化序列差异性成因. 天然气工业, 2019, 39(1):71-77. SHI H L, XIONG L, DONG X X, et al. The characteristics of shale facies and the differential genesis of evolution sequence in the Lower Longmaxi Formation of Wufeng Formation in southern Sichuan. Natural Gas Industry, 2019, 39(1):71-77.
[31] 武恒志, 熊亮, 葛忠伟, 等. 四川盆地威远地区页岩气优质储层精细刻画与靶窗优选. 天然气工业, 2019, 39(3):11-20. WU H Z, XIONG L, GE Z W, et al. Fine characterization and target window optimization of high quality shale gas reservoirs in the Weiyuan area, Sichuan Basin. Natural Gas Industry, 2019, 39(3):11-20.
[1] YAN Jianping, LAI Siyu, GUO Wei, SHI Xuewen, LIAO Maojie, TANG Hongming, HU Qinhong, HUANG Yi. Research progress on casing deformation types and influencing factors in geological engineering of shale gas wells [J]. Lithologic Reservoirs, 2024, 36(5): 1-14.
[2] YANG Xuefeng, ZHAO Shengxian, LIU Yong, LIU Shaojun, XIA Ziqiang, XU Fei, FAN Cunhui, LI Yutong. Main controlling factors of shale gas enrichment of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Ningxi area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 99-110.
[3] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[4] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[5] DUAN Yifei, ZHAO Weiwei, YANG Tianxiang, LI Fukang, LI Hui, WANG Jianan, LIU Yuchen. Source-reservoir characteristics and accumulation rules of shale gas of Permian Shanxi Formation in Yan'an area, Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 72-83.
[6] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[7] JI Yubing, GUO Bingru, MEI Jue, YIN Zhijun, ZOU Chen. Fracture modeling of shale reservoirs of Silurian Longmaxi Formation in Luobu syncline in Zhaotong National Shale Gas Demonstration Area, southern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 137-145.
[8] ZHANG Tan, JIA Mengyao, SUN Yaxiong, DING Wenlong, SHI Siyu, FAN Xinyu, YAO Wei. Restoration and characteristics of karst paleogeomorphology of Middle Permian Maokou Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 111-120.
[9] YANG Bowei, SHI Wanzhong, ZHANG Xiaoming, XU Xiaofeng, LIU Yuzuo, BAI Luheng, YANG Yang, CHEN Xianglin. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou [J]. Lithologic Reservoirs, 2024, 36(1): 45-58.
[10] WEI Quanchao, LI Xiaojia, LI Feng, HAO Jingyu, DENG Shuanglin, WU Juan, DENG Bin, WANG Daojun. Development characteristics and significance of fracture veins of Lower Cambrian Qiongzhusi Formation in Wangcang area at Micang Mountain front, Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(5): 62-70.
[11] YANG Yueming, ZHANG Shaomin, JIN Tao, MING Ying, GUO Ruiying, WANG Xingzhi, HAN Luyuan. Characteristics and exploration potential of shale reservoirs of Permian Longtan Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(1): 1-11.
[12] YAN Jianping, LUO Jingchao, SHI Xuewen, ZHONG Guanghai, ZHENG Majia, HUANG Yi, TANG Hongming, HU Qinhong. Fracture development models and significance of Ordovician WufengSilurian Longmaxi shale in Luzhou area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 60-71.
[13] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[14] ZHANG Menglin, LI Guoqin, HE Jia, HENG De. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
[15] WEN Kang, YAN Jianping, ZHONG Guanghai, JING Cui, TANG Hongming, WANG Min, WANG Jun, HU Qinhong, LI Zhipeng. New method of shale gas evaluation of Wufeng-Longmaxi Formation in Changning area, southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 95-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: