Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (3): 31-39.doi: 10.12108/yxyqc.20240303

• PETROLEUM EXPLORATION • Previous Articles    

Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin

CHENG Jing1,2, YAN Jianping1,2, SONG Dongjiang3, LIAO Maojie4, GUO Wei5, DING Minghai6, LUO Guangdong6, LIU Yanmei7   

  1. 1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    2. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University), Chengdu 610500, China;
    3. Shandong Ruilin Energy Technology Co., Ltd., Dongying 257000, Shandong, China;
    4. Research Institute of Shale Gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China;
    5. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    6. Drilling Engineering Company, PetroChina Daqing Oilfield Company, Daqing 163712, Heilongjiang, China;
    7. Schlumberger Technology Service(Chengdu) Co., Ltd., Chengdu 610095, China
  • Received:2023-04-29 Revised:2023-06-24 Published:2024-04-30

Abstract: Taking low resistivity shale gas reservoirs of Wufeng Formation-Longmaxi Formation of well NX22 in Changning area in southern Sichuan Basin as an example, the data of core mineral composition, scanning electron microscope, total organic carbon(TOC)content, water saturation test and logging curves were used to establish a rock volume physical model of low resistivity shale gas reservoirs. A three-dimensional digital core model was constructed by random method, and the resistivity response characteristics were simulated under different mineral components content, water saturation and organic matter graphitization by finite element numerical simulation method, and the main controlling factors were analyzed. The results show that:(1)The rock volume physical model of low resistivity shale gas reservoirs of Wufeng Formation-Longmaxi Formation in Chang-ning area consists of six parts:skeleton(quartz, feldspar, calcite and dolomite), clay minerals, pyrite, ungraphitized organic matter, graphitized organic matter and pores.(2)The 3D digital core is of 100×100×100 pixels in length, width, and height, respectively. It integrates the six parts of the physical model mentioned above, and uses different colors to identify the conductive components. It can display slices in different directions to characterize the composition characteristics of low resistivity shale gas reservoirs.(3)An increase in clay mineral content, pyrite content, water saturation and organic matter graphitization degree can cause a decrease in the resistivity of shale gas reservoirs. However, the high degree of organic matter graphitization(25%)and high water saturation (88.0%)cause the resistivity of shale gas reservoirs to decrease from normal resistivity(greater than 15 Ω·m)to low or even ultra-low resistivity(less than 5 Ω·m), which are the two core factors leading to the ultra-low resistivity response of shale gas reservoirs in the study area.

Key words: low resistivity, shale gas reservoir, digital core, finite element method, conductive factor, water saturation, organic matter graphitization degree, clay minerals, pyrite content, Ordovician Wufeng FormationSilurian Longmaxi Formation, Changning area in Sichaun Basin

CLC Number: 

  • TE348
[1] 蒋珊,王玉满,王书彦,等. 四川盆地川中古隆起及周缘下寒武统筇竹寺组页岩有机质石墨化区预测[J]. 天然气工业, 2018,38(10):19-27. JIANG Shan,WANG Yuman,WANG Shuyan,et al. Distribution prediction of graphitized organic matter areas in the Lower Cambrian Qiongzhusi shale in the central Sichuan paleo-uplift and its surrounding areas in the Sichuan Basin[J]. Natural Gas Industry,2018,38(10):19-27.
[2] 范增辉. 威远地区下志留统龙马溪组页岩气富集条件研究[D]. 成都:成都理工大学,2019. FAN Zenghui. Study on shale gas enrichment condition of Lower Silurian Longmaxi Formation in Weiyuan area of Sichuan Basin[D]. Chengdu:Chengdu University of Technology,2019.
[3] 魏富彬,刘珠江,陈斐然,等. 川东南地区龙马溪组页岩"低电阻、低含气"成因及地质意义[J]. 石油实验地质,2023,45(6):1089-1096. WEI Fubin,LIU Zhujiang,CHEN Feiran,et al. Discussion on genesis and geological significance of"low resistivity and low gas content"of Longmaxi Formation shale in southeastern Sichuan[J]. Petroleum Geology & Experiment,2023,45(6):1089-1096.
[4] 王鑫. 川南地区海相低阻页岩发育影响因素及含气性评价[D]. 北京:中国石油大学(北京),2020. WANG Xin. Low-resistivity origin and evaluation of gas-bearing properties of marine shale in southern Sichuan Basin[D]. Beijing:China University of Petroleum(Beijing),2020.
[5] 王玉满,董大忠,程相志,等. 海相页岩有机质碳化的电性证据及其地质意义:以四川盆地南部地区下寒武统筇竹寺组页岩为例[J]. 天然气工业,2014,34(8):1-7. WANG Yuman,DONG Dazhong,CHENG Xiangzhi,et al. Electric property evidences of the carbonification of organic matters in marine shales and its geologic significance:A case of the Lower Cambrian Qiongzhusi Shale in southern Sichuan Basin[J]. Natural Gas Industry,2014,34(8):1-7.
[6] 赵文韬,荆铁亚,熊鑫,等. 海相页岩有机质石墨化特征研究:以渝东南地区牛蹄塘组为例[J]. 地质科技情报,2018,37(2):183-191. ZHAO Wentao,JING Tieya,XIONG Xin,et al. Graphitization characteristics of organic matters in marine-facies shales[J]. Geological Science and Technology Information,2018,37(2):183-191.
[7] 张琴,赵群,罗超,等. 有机质石墨化及其对页岩气储层的影响:以四川盆地南部海相页岩为例[J]. 天然气工业,2022,42(10):25-36. ZHANG Qin,ZHAO Qun,LUO Chao,et al. Effect of graphitization of organic matter on shale gas reservoirs:Take the marine shales in the southern Sichuan Basin as examples[J]. Natural Gas Industry,2022,42(10):25-36.
[8] 王滢,何嘉,寇一龙,等. 长宁地区龙马溪组页岩储层低电阻率成因[J]. 油气地质与采收率,2022,29(3):53-61. WANG Ying,HE Jia,KOU Yilong,et al. Causes of low resistivity of Longmaxi Formation shale reservoirs in Changningarea[J]. Petroleum Geology and Recovery Efficiency,2022,29(3):53-61.
[9] 杨小兵,张树东,张志刚,等. 低阻页岩气储层的测井解释评价[J]. 成都理工大学学报(自然科学版),2015,42(6):692-699. YANG Xiaobing,ZHANG Shudong,ZHANG Zhigang,et al. Logging interpretation and evaluation of low resistivity shale gas reservoirs[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2015,42(6):692-699.
[10] 高和群,丁安徐,蔡潇,等. 中上扬子海相页岩电阻率异常成因分析[J]. 断块油气田,2016,23(5):578-582. GAO Hequn,DING Anxu,CAI Xiao,et al. Genetic analysis of abnormal resistivity of Middle-Upper Yangtze marine shales[J]. Fault-Block Oil & Gas Field,2016,23(5):578-582.
[11] 谢小国,罗兵,尹亮先,等. 低阻页岩气储层影响因素分析[J]. 四川地质学报,2017,37(3):433-437. XIE Xiaoguo,LUO Bing,YIN Liangxian,et al. Influence factors of low resistivity shale gas reservoir[J]. Acta Geologica Sichuan,2017,37(3):433-437.
[12] 孙建孟,熊铸,罗红,等. 扬子地区下古生界页岩气储层低阻成因分析及测井评价[J]. 中国石油大学学报(自然科学版), 2018,42(5):47-56. SUN Jianmeng,XIONG Zhu,LUO Hong,et al. Mechanism analysis and logging evaluation of low resistivity in Lower Paleozoic shale gas reservoirs of Yangtze region[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018,42(5):47-56.
[13] 崔瑞康,孙建孟,刘行军,等. 低阻页岩电阻率主控因素研究[J]. 物探与化探,2022,46(1):150-159. CUI Ruikang,SUN Jianmeng,LIU Xingjun,et al. Major controlling factors of low-resistance shale gas reservoirs[J]. Geophysical and Geochemical Exploration,2022,46(1):150-159.
[14] 张少龙,闫建平,石学文,等. 深层页岩气甜点分类的地质-工程评价指标体系及应用:以四川盆地LZ地区五峰组-龙马溪组为例[J]. 中南大学学报(自然科学版),2022,53(9):3666-3680. ZHANG Shaolong,YAN Jianping,SHI Xuewen,et al. Geological and engineering evaluation index system for deep shalegas sweet spots classification and its application:A case of WufengLongmaxi formations in LZ area,Sichuan Basin[J]. Journal of Central South University(Science and Technology),2022,53(9):3666-3680.
[15] 丛平,闫建平,井翠,等. 页岩气储层可压裂性级别测井评价及展布特征:以川南X地区五峰组-龙马溪组为例[J]. 岩性油气藏,2021,33(3):177-188. CONG Ping,YAN Jianping,JING Cui,et al. Logging evaluation and distribution characteristics of fracturing grade in shale gas reservoir:A case study from Wufeng Formation and Longmaxi Formation in X area,southern Sichuan Basin[J]. Lithologic Reservoirs,2021,33(3):177-188.
[16] 谭茂金. 数字岩石物理学及测井解释应用概论[J]. 测井技术,2022,46(4):371-379. TAN Maojin. Digital rock physics and its progress in log interpretation[J]. Well Logging Technology,2022,46(4):371-379.
[17] 张丽,孙建孟,孙志强. 数字岩心建模方法应用[J]. 西安石油大学学报(自然科学版),2012,27(3):35-40. ZHANG Li,SUN Jianmeng,SUN Zhiqiang. Research in digital core modeling methods[J]. Journal of Xi'an Shiyou University (Natural Science Edition),2012,27(3):35-40.
[18] 孔强夫,周灿灿,李潮流,等. 数字岩心电性数值模拟方法及其发展方向[J]. 中国石油勘探,2015,20(1):69-77. KONG Qiangfu,ZHOU Cancan,LI Chaoliu,et al. Numerical simulation method of digital core electrical property and its development orientations[J]. China Petroleum Exploration,2015, 20(1):69-77.
[19] 邹才能,董大忠,王社教,等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发,2010,37(6):641-653. ZOU Caineng,DONG Dazhong,WANG Shejiao,et al. Geological characteristics,formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development,2010,37(6):641-653.
[20] 蔡苏阳,肖七林,朱卫平,等. 川南地区五峰组-龙马溪组页岩储层纳米孔隙发育特征及其控制因素:以四川盆地南部长宁双河剖面为例[J]. 石油实验地质,2020,42(6):920-927. CAI Suyang,XIAO Qilin,ZHU Weiping,et al. Characteristics and controlling factors of nano pores in shale reservoirs of Wufeng-Longmaxi formations in southern Sichuan Basin:Insights from Shuanghe outcrop in Changning area[J]. Petroleum Geology & Experiment,2020,42(6):920-927.
[21] NIE Haikuan,HE Zhiliang,LIU Guangxiang,et al. Genetic mechanism of high-quality shale gas reservoirs in the WufengLongmaxi Fms in the Sichuan Basin[J]. Natural Gas Industry B,2021,8(1):24-34.
[22] NIE Haikuan,CHEN Qian,ZHANG Guangrong,et al. An overview of the characteristic of typical Wufeng-Longmaxi shale gas fields in the Sichuan Basin,China[J]. Natural Gas Industry B,2021,8(3):217-230.
[23] 邹晓艳,李贤庆,王元,等. 川南地区五峰组-龙马溪组深层页岩储层特征和含气性[J]. 天然气地球科学,2022,33(4):654-665. ZOU Xiaoyan,LI Xianqing,WANG Yuan,et al. Reservoir characteristics and gas content of Wufeng-Longmaxi formations deep shale in southern Sichuan Basin[J]. Natural Gas Geoscience,2022,33(4):654-665.
[24] 邹辰,吴永辉,章超,等. 渝西地区龙马溪组页岩低阻主控因素及有利区预测[J]. 东北石油大学学报,2023,47(2):81-90. ZOU Chen,WU Yonghui,ZHANG Chao,et al. Main controlling factors of the low resistivity Longmaxi Formation shale and prediction of favorable area in Yuxi area[J]. Journal of Northeast Petroleum University,2023,47(2):81-90.
[25] 赖富强,李仕超,王敏,等. 济阳坳陷页岩油储层矿物组分最优化反演方法[J]. 特种油气藏,2022,29(2):16-23. LAI Fuqiang,LI Shichao,WANG Min,et al. Optimal retrieval method for mineral constituents of shale oil reservoirs in Jiyang Sag[J]. Special Oil & Gas Reservoirs,2022,29(2):16-23.
[26] 刘学锋,张伟伟,孙建孟. 三维数字岩心建模方法综述[J]. 地球物理学进展,2013,28(6):3066-3072. LIU Xuefeng,ZHANG Weiwei,SUN Jianmeng,et al. Methods of constructing 3D digital cores:A review[J]. Progress in Geophysics,2013,28(6):3066-3072.
[27] 刘学锋. 基于数字岩心的岩石声电特性微观数值模拟研究[D]. 青岛:中国石油大学(华东),2010. LIU Xuefeng. Numerical simulation of elastic and electrical properties of rock based on digital cores[D]. Qingdao:China University of Petroleum(East China),2010.
[28] 聂昕. 页岩气储层岩石数字岩心建模及导电性数值模拟研究[D]. 北京:中国地质大学(北京),2014. NIE Xin. Digital core modeling and numerical study of electrical conductivity of shale gas reservoir rock[D]. Beijing:China University of Geosciences(Beijing),2014.
[29] 张强,李炎龙,徐平,等. 基于有限元法的数字岩心导电性数值模拟[J]. 地球物理学进展,2017,32(5):2148-2151. ZHANG Qiang,LI Yanlong,XU Ping,et al. Numerical simulation of electrical conductivity in digital cores based on finite element method[J]. Progress in Geophysics,2017,32(5):2148-2151.
[30] 聂昕,李秉科,张杰,等. 基于数字岩心的裂缝性碳酸盐岩储层电性数值模拟[J]. 长江大学学报(自然科学版),2022,19(6):20-29. NIE Xin,LI Bingke,ZHANG Jie,et al. Numerical simulation of electrical properties of fractured carbonate reservoirs based on digital cores[J]. Journal of Yangtze University(Natural Science Edition),2022,19(6):20-29.
[31] 刘宇虹. 长宁页岩气水平井排采工艺技术研究[D]. 成都:西南石油大学,2019. LIU Yuhong. Study on drainage and production technology of Changning shale horizontal wells[D]. Chengdu:Southwest Petroleum University,2019.
[32] 王秀平,牟传龙,葛祥英,等. 四川盆地南部及其周缘龙马溪组黏土矿物研究[J]. 天然气地球科学,2014,25(11):1781-1794. WANG Xiuping,MOU Chuanlong,GE Xiangying,et al. Study on clay minerals in the Lower Silurian Longmaxi Formation in southern Sichuan Basin and its periphery[J]. Natural Gas Geoscience,2014,25(11):1781-1794.
[33] 范雨霏,潘保芝,郭宇航,等. 利用数字岩心技术评价含黏土砂岩导电模型[J]. 吉林大学学报(地球科学版),2021,51(3):919-926. FAN Yufei,PAN Baozhi,GUO Yuhang,et al. Evaluate electrical conductivity models of clay-bearing sandstones by digital core technology[J]. Journal of Jilin University(Earth Science Edition),2021,51(3):919-926.
[34] 张馨艺. 长宁地区五峰组-龙马溪组页岩气地质特征研究[D]. 成都:西南石油大学,2018. ZHANG Xinyi. Study on geological characteristics of WufengLongmaxi shale gas in Changning area[D]. Chengdu:Southwest Petroleum University,2018.
[35] 程仁杰,孙建孟,刘建新,等. X凹陷A构造低阻气层成因机理分析[J]. 物探与化探,2022,46(6):1369-1380. CHENG Renjie,SUN Jianmeng,LIU Jianxin,et al. Genetic mechanisms of low-resistivity gas zones in structure A of sag X[J]. Geophysical and Geochemical Exploration,2022,46(6):1369-1380.
[36] 聂舟,衡德,邹源红,等. 四川盆地长宁地区海相页岩吸附气含量演化特征:以N201井五峰组-龙马溪组一段为例[J]. 海相油气地质,2021,26(1):43-50. NIE Zhou,HENG De,ZOU Yuanhong,et al. Evolution of adsorbed gas content of marine shale in Changning area,Sichuan Basin:A case of Wufeng Formation-Longmaxi member 1 in well N201[J]. Marine Origin Petroleum Geology,2021,26(1):43-50.
[37] 雍世和,张超谟. 测井数据处理与综合解释[M].东营:中国石油大学出版社,2002. YONG Shihe,ZHANG Chaomo. Logging data processing and comprehensive interpretation[M]. Dongying:China University of Petroleum Press,2002.
[38] 王立伟,李生杰,刘晓雪,等. 四川盆地五峰-龙马溪组低阻页岩含水饱和度测井评价[J]. 科学技术与工程,2022,22(16):6456-6462. WANG Liwei,LI Shengjie,LIU Xiaoxue,et al. Water saturation of low resistance shale in the Wufeng-Longmaxi Formation of Sichuan Basin logging evaluation[J]. Science Technology and Engineering,2022,22(16):6456-6462.
[39] 闫建平,蔡进功,赵铭海,等. 运用测井信息研究烃源岩进展及其资源评价意义[J]. 地球物理学进展,2009,24(1):270-279. YAN Jianping,CAI Jingong,ZHAO Minghai,et al. Advances in the study of source rock evaluation by geophysical logging and its significance in resource assessment[J]. Progress in Geophysics,2009,24(1):270-279.
[40] 薛子鑫,姜振学,郝绵柱,等. 川南深层页岩有机质石墨化对储层孔隙的控制作用[J]. 中南大学学报(自然科学版), 2022,53(9):3532-3544. XUE Zixin,JIANG Zhenxue,HAO Mianzhu,et al. Controlling effect of organic matter graphitization on reservoir pore structure in deep shale reservoirs,southern Sichuan[J]. Journal of Central South University(Science and Technology),2022,53(9):3532-3544.
[1] YANG Bowei, SHI Wanzhong, ZHANG Xiaoming, XU Xiaofeng, LIU Yuzuo, BAI Luheng, YANG Yang, CHEN Xianglin. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou [J]. Lithologic Reservoirs, 2024, 36(1): 45-58.
[2] BAI Jiajia, SI Shuanghu, TAO Lei, WANG Guoqing, WANG Longlong, SHI Wenyang, ZHANG Na, ZHU Qingjie. Mechanism of DES+CTAB composite oil displacement agent system to improve oil recovery of low-permeability tight sandstone reservoirs [J]. Lithologic Reservoirs, 2024, 36(1): 169-177.
[3] YUE Shijun, LIU Yingru, XIANG Yiwei, WANG Yulin, CHEN Fenjun, ZHENG Changlong, JING Ziyan, ZHANG Tingjing. A new method for calculating dynamic reserves and water influx of water-invaded gas reservoirs [J]. Lithologic Reservoirs, 2023, 35(5): 153-160.
[4] Lü Dongliang, YANG Jian, LIN Liming, ZHANG Kaili, CHEN Yanhu. Characterization model of oil-water relative permeability curves of sandstone reservoir and its application in numerical simulation [J]. Lithologic Reservoirs, 2023, 35(1): 145-159.
[5] ZHANG Jigang, DU Meng, CHEN Chao, QIN Ming, JIA Ninghong, LYU Weifeng, DING Zhenhua, XIANG Yong. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2022, 34(4): 89-102.
[6] XU Jing, HE Yonghong, MA Fangxia, DU Yanjun, MA Lang, GE Yunjin, WANG Ruisheng, GUO Rui, DUAN Liang. Effective reservoir thickness of main oil layers in Dingbian Oilfield, Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(5): 107-119.
[7] DU Meng, XIANG Yong, JIA Ninghong, LYU Weifeng, ZHANG Jing, ZHANG Daiyan. Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag [J]. Lithologic Reservoirs, 2021, 33(5): 120-131.
[8] ZHAO Jun, HAN Dong, HE Shenglin, TANG Di, ZHANG Tao. Identification of fluid properties of low contrast reservoir based on water-gas ratio calculation [J]. Lithologic Reservoirs, 2021, 33(4): 128-136.
[9] XIANG Xuebing, SIMA Liqiang, WANG Liang, LI Jun, GUO Yuhao, ZHANG Hao. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 137-146.
[10] ZHOU Xinping, DENG Xiuqin, LI Shixiang, ZUO Jing, ZHANG Wenxuan, LI Taotao, LIAO Yongle. Characteristics of formation water and its geological significance of lower combination of Yanchang Formation in Ordos Basin [J]. Lithologic Reservoirs, 2021, 33(1): 109-120.
[11] CAO Jiangjun, CHEN Chaobing, LUO Jinglan, WANG Xi. Impact of authigenic clay minerals on micro-heterogeneity of deep water tight sandstone reservoirs: a case study of Triassic Chang 6 oil reservoir in Heshui area,southwestern Ordos Basin [J]. Lithologic Reservoirs, 2020, 32(6): 36-49.
[12] FU Dongyu, LI Yongming, ZHAO Jinzhou, JIANG Youshi, CHEN Xiyu, XU Wenjun. Gas seepage flow law of shale gas reservoirs based on REV-scale lattice Boltzmann method [J]. Lithologic Reservoirs, 2020, 32(5): 151-160.
[13] LUO Zhifeng, HUANG Jingyun, HE Tianshu, HAN Mingzhe, ZHANG Jintao. Extending regularity of fracture height by acid fracturing in carbonate reservoir: a case study of Qixia Formation in western Sichuan [J]. Lithologic Reservoirs, 2020, 32(2): 169-176.
[14] REN Dazhong, ZHOU Zhaohua, LIANG Ruixiang, ZHOU Ran, LIU Na, NAN Junxiang. Characteristics of clay minerals and its impacts on reservoir quality of tight sandstone gas reservoir: a case from Sulige Gas Field,Ordos Basin [J]. Lithologic Reservoirs, 2019, 31(4): 42-53.
[15] LIU Zhiying, ZHANG Chengguang, TANG Jun, XIAO Chengwen. Influence of fracture on rock resistivity and its application in saturation calculation [J]. Lithologic Reservoirs, 2018, 30(2): 120-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: