Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (5): 120-131.doi: 10.12108/yxyqc.20210511

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Pore structure characteristics of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag

DU Meng1,2,3, XIANG Yong1, JIA Ninghong2,3, LYU Weifeng2,3, ZHANG Jing4, ZHANG Daiyan4   

  1. 1. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China;
    2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    3. State Key Laboratory of Enhanced Oil Recovery, Beijing 100083, China;
    4. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield, Karamay 843000, Xinjiang, China
  • Received:2021-01-11 Revised:2021-04-30 Online:2021-10-01 Published:2021-09-30

Abstract: The Baikouquan Formation in Mahu Sag is an important oil and gas accumulation area of glutenite. In order to study the pore structure characteristics of tight glutenite reservoir of Baikouquan Formation in Mahu Sag. The analyses of mercury injection, nuclear magnetic resonance and cast thin sections were carried out. Combined with micro-CT scanning technology, quantitative evaluation of minerals by scanning electron microscope(QEMSCAN) and MAPS micro-image splicing technologies, the comprehensive study of microscopic pore structure characteristics from scale and precision, two-dimension and three-dimension were carried out. The results show that:(1) The pore throat scales of tight glutenite reservoirs of Baikouquan Formation in Mahu Sag are widely distributed, showing obvious bimodal characteristics. The large-scale pore throats are submicron to micron scale, while small scale pore throats are nano to submicron scale. The contribution rate of 0.5-4.0 μm throat is the highest, and the contribution rate of micron scale pore throat to seepage is greater.(2) On micron scale, the pore structure has the characteristics of strong heterogeneity and complex mode. The main pore types are dissolution pore, intergranular pore and micro fracture. The distribution states of pores are mainly banded and isolated. The contribution of pore connectivity to seepage is greater than pore scale.(3) On nano scale, scanning electron microscope show that the main mineral components are quartz and feldspar. The compaction between grains is sufficient, and the grain shape is closely combined. The morphology of nano pores in the samples matrix with different porosity and permeability are distinctive, mainly the honeycomb feldspar dissolution pores in mineral grains (crystals) or micropores on the surface of interstitial materials, and the cleavage fracture of calcite particles can be observed, which play a good role in communicating the micro spherical pores and nano dissolved pores. The research results can provide reference for the pore structure characterization and "sweet spot" prediction of tight glutenite reservoirs.

Key words: tight glutenite, complex mode, cross scale, digital core, microscopic pore structure characterization, Baikouquan Formation, Mahu Sag

CLC Number: 

  • TE122
[1] 林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示. 岩性油气藏, 2011, 23(4):25-30. LIN S H, ZOU C N, YUAN X J, et al. Current situation and enlightenment of tight oil development in the United States. Lithologic Reservoirs, 2011, 23(4):25-30.
[2] 李国欣, 覃建华, 鲜成钢, 等. 致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例. 石油勘探与开发, 2020, 47(6):1-13. LI G X, QIN J H, XIAN C G, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development:A case study of the Mahu Oilfield, Junggar Basin, NW China. Petroleum Exploration and Development, 2020, 47(6):1-13.
[3] 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展. 石油勘探与开发, 2018, 45(4):546-560. JIA C Z, ZOU C N, YANG Z, et al. Significant progress of continental petroleum geology theory in basins of Central and Western China. Petroleum Exploration and Development, 2018, 45(4):546-560.
[4] 黄建波, 张奎, 谢斌, 等. 准噶尔盆地玛湖凹陷百口泉组低渗透率砾岩储层分类. 测井技术, 2020, 44(3):305-311. HUANG J B, ZHANG K, XIE B, et al.Classification and log evaluation to low permeability conglomerate reservior of Baikouquan Formation in Mahu Depression, Junggar Basin. Well Logging Technology, 2020, 44(3):305-311.
[5] 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响. 地球物理学进展, 2017, 32(3):1019-1028. LIU X J, XIONG J, LIANG L X, et al. Study on the characteristics of pore structure of tight sand based on micro-CT scanning and its influence on fluid flow. Progress in Geophysics, 2017, 32(3):1019-1028.
[6] 陈怡婷, 刘洛夫, 王梦尧, 等. 鄂尔多斯盆地西南部长6、长7储集层特征及其控制因素. 岩性油气藏, 2020, 32(1):51-65. CHEN Y T, LIU L F, WANG M Y, et al. Characteristics and controlling factors of Chang 6 and Chang 7 reservoirs in southwestern Ordos Basin. Lithologic Reservoirs, 2020, 32(1):51-65.
[7] 魏钦廉, 崔改霞, 刘美荣, 等. 鄂尔多斯盆地西南部二叠系盒8下段储层特征及控制因素.岩性油气藏, 2021, 33(2):17-25. WEI Q L, CUI G X, LIU M R, et al. Reservoir characteristics and controlling factors of Permian lower He 8 member in southwestern Ordos Basin. Lithologic Reservoirs, 2021, 33(2):17-25.
[8] CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. AAPG Bulletin, 2012, 96(4):665-677.
[9] CLARKSON C R, FREEMAN M, HE L, et al. Characterization of tight gas reservoir pore structure using USANS/SANS and gas adsorption analysis. Fuel, 2012, 95(2):371-385.
[10] 白斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构. 石油勘探与开发, 2013, 40(3):329-333. BAI B, ZHU R K, WU S T, et al. Multi-scale method of Nano (Micro) -CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin. Petroleum Exploration and Development, 2013, 40(3):329-333.
[11] 王华超, 韩登林, 欧阳传湘, 等. 库车坳陷北部阿合组致密砂岩储层特征及主控因素. 岩性油气藏, 2019, 31(2):115-123. WANG H C, HAN D L, OUYANG C X, et al. Characteristics and main controlling factors of tight sandstone reservoir of Ahe Formation in northern Kuqa Depression. Lithologic Reservoirs, 2019, 31(2):115-123.
[12] GOLAB A, WARD C R, PERMANA A, et al. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography,with special reference to modes of mineral occurrence. International Journal of Coal Geology, 2013, 113(Complete):97-108.
[13] BIJOYENDRA B, MITRA K M, DOUGLAS V. Understanding the micro structure of Berea sandstone by the simultaneous use of micro-computed tomography(micro-CT)and focused ion beamscanning electron microscopy(FIB-SEM). Micron, 2011, 42(5):412-418.
[14] 贾宁洪, 吕伟峰, 常天全, 等. 高效无损岩心孔隙度精确测量新方法. 石油学报, 2018, 39(7):824-828. JIA N H, LYU W F, CHANG T Q, et al. A new method for precisely measuring core porosity with high efficiency and no destruction. Acta Petrolei Sinica, 2018, 39(7):824-828.
[15] LYU W F, CHEN S Y, GAO Y, et al. Evaluating seepage radius of tight oil reservoir using digital core modeling approach. Journal of Petroleum Science and Engineering, 2019, 178:609-615.
[16] 廖康涔, 陈轩, 李剑锋, 等. 普光气田飞仙关组滩相储层微观孔隙结构特征分析. 当代化工, 2020, 49(9):2005-2010. LIAO K C, CHEN X, LI J F, et al. Analysis on microcosmic pore structure characteristics of beach facies reservoir of Feixianguan Formation in Puguang Gas Field.Contemporary Chemical Industry, 2020, 49(9):2005-2010.
[17] 操应长, 燕苗苗, 葸克来, 等. 玛湖凹陷夏子街地区三叠系百口泉组砂砾岩储层特征及控制因素. 沉积学报, 2019, 37(5):945-956. CAO Y C, YAN M M, XI K L, et al. Characteristics and controlling factors of glutenite reservoir of Triassic Baikouquan Formation in Xiazijie area of Mahu Sag. Acta Sedimentologica Sinica, 2019, 37(5):945-956.
[18] MAO G T, LAI F P, LI Z P, et al. Characteristics of pore structure of tight gas reservoir and its influence on fluid distribution during fracturing. Journal of Petroleum Science and Engineering, 2020, 193:524-531.
[19] 汪贺, 师永民, 徐大卫, 等. 非常规储层孔隙结构表征技术及进展. 油气地质与采收率, 2019, 26(5):21-30. WANG H, SHI Y M, XU D W, et al. Unconventional reservoir pore structure characterization techniques and progress. Petroleum Geology and Recovery Efficiency, 2019, 26(5):21-30.
[20] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述. 岩性油气藏, 2013, 25(5):123-128. HAO L W, WANG Q, TANG J, et al. Research progress of reservoir microscopic pore structure. Lithologic Reservoirs, 2013, 25(5):123-128.
[21] 冷振鹏, 杨胜建, 吕伟峰, 等. 致密油孔隙结构表征方法:以川中致密油储层岩心为例. 断块油气田, 2016, 23(2):161-165. LENG Z P, YANG S J, LYU W F. Pore structure characterization for tight oil reservoirs:Taking Chuanzhong tight oil reservoir cores as examples. Fault-Block Oil & Gas Field, 2016, 23(2):161-165.
[22] ZHU W, YU W, CHEN Y. Digital core modeling from irregular grains. Journal of Applied Geophysics, 2012, 85(2):37-42.
[23] PENG J, HAN H D, XIA Q S, et al. Fractal characteristic of microscopic pore structure of tight sandstone reservoirs in Kalpintag Formation in Shuntuoguole area, Tarim Basin. Petroleum Research, 2020, 5(1):1-17.
[24] 刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验. 地球物理学报, 2014, 57(4):1133-1140. LIU X J, ZHU H L, LIANG L X. Digital rock physics of sandstone based on micro-CT technology, 2014, 57(4):1133-1140.
[25] 李易霖, 张云峰, 丛琳,等. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用:以大安油田扶余油层为例. 吉林大学学报(地球科学版), 2016, 46(2):379-387. LI Y L, ZHANG Y F, CONG L. Application of X-CT scanning technique in the characterization of micro pore structure of tight sandstone reservior:An example from Fuyu oil layer in Daan oilfield, 2016, 46(2):379-387.
[26] DU S H. Characteristics and the formation mechanism of the heterogeneous microfractures in the tight oil reservoir of Ordos Basin, China. Journal of Petroleum Science and Engineering, 2020, 191(5):131-138.
[27] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征. 岩性油气藏, 2020, 32(3):14-23. YANG F, HE D, MA D M, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir. Lithologic Reservoirs, 2020, 32(3):14-23.
[28] 何建华, 丁文龙, 付景龙, 等. 页岩微观孔隙成因类型研究. 岩性油气藏, 2014, 26(5):30-35. HE J H, DING W L, FU J L, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir. Lithologic Reservoirs, 2014, 26(5):30-35.
[29] 蒋庆平, 孔垂显, 李维锋, 等. 陆相湖盆大型扇三角洲沉积特征与演化规律:以准噶尔盆地玛湖凹陷西斜坡区三叠系百口泉组为例. 沉积学报, 2020, 38(5):923-932. JIANG Q P, KONG C X, LI W F, et al. Sedimentary characteristics and evolution laws of large fan deltas in continental lake basins:A case study of the Triassic Baikouquan Formation in the west slope of Mahu Sag, Junggar Basin. Acta Sedimentologica Sinica, 2020, 38(5):923-932.
[1] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[2] WANG Yifeng, TIAN Jixian, LI Jian, QIAO Tong, LIU Chenglin, ZHANG Jingkun, SHA Wei, SHEN Xiaoshuang. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 149-159.
[3] SONG Zhihua, LI Lei, LEI Dewen, ZHANG Xin, LING Xun. Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(3): 40-49.
[4] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[5] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[6] YIN Lu, XU Duonian, YUE Xingfu, QI Wen, ZHANG Jijuan. Reservoir characteristics and hydrocarbon accumulation rules of Triassic Baikouquan Formation in Mahu Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 59-68.
[7] QIN Jianhua, WANG Jianguo, LI Siyuan, LI Sheng, DOU Zhi, PENG Simi. Characteristics and formation mechanism of hydraulic fractures in tight conglomerate reservoirs of Triassic Baikouquan Formation in Mahu Sag [J]. Lithologic Reservoirs, 2023, 35(4): 29-36.
[8] LYU Zhengxiang, LIAO Zheyuan, LI Yuefeng, SONG Xiuzhang, LI Xiang, HE Wenjun, HUANG Liliang, QING Yuanhua. Diagenesis of alkaline lacustrine dolomitic reservoirs of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(5): 26-37.
[9] PENG Miao, ZHANG Lei, TAO Jinyu, ZHAO Kang, ZHANG Xianghui, ZHANG Changmin. Quantitative characterization of gravel roundness of sandy conglomerates of Triassic Baikouquan Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(5): 121-129.
[10] YANG Fan, BIAN Baoli, LIU Huiying, YAO Zongquan, YOU Xincai, LIU Hailei, WEI Yanzhao. Sedimentary characteristics of fan delta in restricted lacustrine basin of Permian Xiazijie Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(5): 63-72.
[11] ZHANG Jigang, DU Meng, CHEN Chao, QIN Ming, JIA Ninghong, LYU Weifeng, DING Zhenhua, XIANG Yong. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2022, 34(4): 89-102.
[12] BAI Yu, WANG Fei, NIU Zhijie, JIN Kailai, LI Peiyi, XU Duonian, CHEN Gangqiang. Hydrocarbon generation kinetics of source rocks of Permian Fengcheng Formation in Mahu Sag,Junggar Basin [J]. Lithologic Reservoirs, 2022, 34(4): 116-127.
[13] LEI Haiyan, GUO Pei, MENG Ying, QI Jing, LIU Jin, ZHANG Juan, LIU Miao, ZHENG Yu. Pore structure and classification evaluation of shale oil reservoirs of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(3): 142-153.
[14] CHEN Yongbo, ZHANG Huquan, ZHANG Han, ZENG Huahui, WANG Bin, WANG Hongqiu, XU Duonian, MA Yongping, ZONG Zhaoyun. Dolomitic reservoir prediction technology based on OVT domain migration data and its application: A case study of Feng 3 member in Wuxia area,Mahu Sag [J]. Lithologic Reservoirs, 2021, 33(6): 145-155.
[15] MAO Rui, MU Liwei, WANG Gang, FAN Haitao. Oil-bearing evaluation method based on NMR free relaxation characteristics: A case study of conglomerate reservoirs of lower Urho Formation in Mahu Sag,Junggar Basin [J]. Lithologic Reservoirs, 2021, 33(5): 140-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DUAN Tianxiang,LIU Xiaomei,ZHANG Yajun,XIAO Shuqin. Discussion on geologic modeling with Petrel[J]. Lithologic Reservoirs, 2007, 19(2): 102 -107 .
[2] ZHANG Liqiu. Optimization of upward strata combination of second class oil layer in eastern south Ⅱ area of Daqing Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 116 -120 .
[3] ZHANG Di,HOU Zhongjian,WANG Yahui,WANG Ying,WANG Chunlian. Sedimentary characteristics of lacustrine carbonate rocks of the first member of Shahejie Formation in Banqiao-Beidagang area[J]. Lithologic Reservoirs, 2008, 20(4): 92 -97 .
[4] FAN Huaicai, LI Xiaoping, DOU Tiancai, WU Xinyuan. Study on stress sensitivity effect on flow dynamic features of gas wells[J]. Lithologic Reservoirs, 2010, 22(4): 130 -134 .
[5] TIAN Shufang,ZHANG Hongwen. Application of life cycle theory to predict increasing trend of proved oil reserves in Liaohe Oilfield[J]. Lithologic Reservoirs, 2010, 22(1): 98 -100 .
[6] YANG Kai,GUO Xiao. Numerical simulation study of three-dimensional two-phase black oil model in fractured low permeability reservoirs[J]. Lithologic Reservoirs, 2009, 21(3): 118 -121 .
[7] ZHAI Zhongxi, QINWeijun, GUO Jinrui. Quantitative relations between oil-gas filling degree and channel seepage flow capacity of the reservoir:Example of Shuanghe Oilfield in Biyang Depression[J]. Lithologic Reservoirs, 2009, 21(4): 92 -95 .
[8] QI Minghui,LU Zhengyuan,YUAN Shuai,LI Xinhua. The analysis on the sources of water body and characteristic of water breakthough at Block 12 in Tahe Oilfield[J]. Lithologic Reservoirs, 2009, 21(4): 115 -119 .
[9] LI Xiangbo,CHEN Qi,lin,LIU Huaqing,WAN Yanrong,MU Jingkui,LIAO Jianbo,WEI Lihua. Three types of sediment gravity flows and their petroliferous features of Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(3): 16 -21 .
[10] LIU Yun,LU Yuan,YI Xiangyi, ZHANG Junliang, ZHANG Jinliang,WANG Zhenxi. Gas hydrate forecasting model and its influencing factors[J]. Lithologic Reservoirs, 2010, 22(3): 124 -127 .
TRENDMD: