Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (4): 89-102.doi: 10.12108/yxyqc.20220409

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag

ZHANG Jigang1, DU Meng2,3,4, CHEN Chao1, QIN Ming1, JIA Ninghong3,4, LYU Weifeng3,4, DING Zhenhua1, XIANG Yong2   

  1. 1. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China;
    2. College of Mechanical and Transportation Engineering, China University of Petroleum(Beijing), Beijing 102249, China;
    3. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    4. State Key Laboratory of Enhanced Oil Recovery, PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2021-12-10 Revised:2022-03-15 Online:2022-07-01 Published:2022-07-07

Abstract: The Permian Lucaogou Formation in Jimsar Sag is an important shale oil and gas accumulation area. Based on the analyses of cast thin sections,mercury injection and nuclear magnetic resonance,combined with medical CT,micro-CT scanning technology,quantitative evaluation of minerals by scanning electron microscope(QEMSCAN)and advanced mathematical algorithms of Avizo visualization software,a three-dimensional digital core of shale reservoirs of Lucaogou Formation in Jimsar Sag was constructed,and the pore network model parameters were extracted,and the full-scale pore size distribution curves were obtained. The comprehensively quantitative characterization of microscopic pore structure from multiple dimensions was carried out. The results show that:(1)The average porosity of the shale reservoirs of Lucaogou Formation in the study area is 7.6%, and the average permeability is 0.37 mD,which belongs to low porosity and ultra-low permeability tight shale reservoir. The main reservoir space is secondary dissolved pores,including residual intergranular pores,biological cavity pores and diagenetic microfractures.(2)The pore throat scale ranges from nanometers to micrometers. The throats within 0.12-1.75 μm have the highest contribution rate,and the submicron-micron pore throats have a greater contribution to seepage. The pores are mainly distributed in isolated and banded shape. The pore radius is mostly 4.5-12.5 μm,the throat radius is mostly 1.3-5.1 μm,and the throat length is 5-15 μm. The pore throat coordination number is mainly 1-2. The pore structure has the characteristics of strong heterogeneity and poor connectivity,and the contribution of pore connectivity to seepage is greater than that of pore scale.(3)On the nano scale,the matrix minerals are mainly quartz and albite,the main nano micropores are organic matter pores in mineral particles(crystals)and cement micropores, and the pore radius is 0.015-5.000 μm.

Key words: shale oil, heterogeneity, cross scale, digital core, microscopic pore structure characterization, Lucaogou Formation, Permian, Jimsar Sag

CLC Number: 

  • TE122
[1] 张廷山, 彭志, 杨巍, 等. 美国页岩油研究对我国的启示[J]. 岩性油气藏, 2015, 27(3):1-10. ZHANG Tingshan, PENG Zhi, YANG Wei, et al. Enlightenment of shale oil research in the United States to China[J]. Lithologic Reservoirs, 2015, 27(3):1-10.
[2] 许琳, 常秋生, 杨成克, 等. 吉木萨尔凹陷二叠系芦草沟组页岩油储层特征及含油性[J]. 石油与天然气地质, 2019, 40(3):535-549. XU Lin, CHANG Qiusheng, YANG Chengke, et al. Shale oil reservoir characteristics and oil bearing property of Permian Lucaogou Formation in Jimusar Sag[J]. Oil & Gas Geology, 2019, 40(3):535-549.
[3] 何登发, 陈新发, 况军, 等. 准噶尔盆地石炭系油气成藏组合特征及勘探前景[J]. 石油学报, 2010, 31(1):1-11. HE Dengfa, CHEN Xinfa, KUANG Jun, et al. Characteristics and exploration prospects of hydrocarbon accumulation in Carboniferous in Junggar Basin[J]. Acta Petrolei Sinica, 2010, 31(1):1-11.
[4] 刘一杉, 东晓虎, 闫林, 等. 吉木萨尔凹陷芦草沟组孔隙结构定量表征[J]. 新疆石油地质, 2019, 40(3):284-289. LIU Yishan, DONG Xiaohu, YAN Lin, et al. Quantitative characterization of pore structure of Lucaogou Formation in Jimsar Sag[J]. Xingjiang Petroleum Geology, 2019, 40(3):284-289.
[5] 李国欣, 覃建华, 鲜成钢, 等. 致密砾岩油田高效开发理论认识、关键技术与实践:以准噶尔盆地玛湖油田为例[J]. 石油勘探与开发, 2020, 47(6):1-13. LI Guoxin, QIN Jianhua, XIAN Chenggang, et al. Theoretical understandings, key technologies and practices of tight conglomerate oilfield efficient development:A case study of the Mahu Oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(6):1-13.
[6] 吉鸿杰, 邱振, 陶辉飞, 等. 烃源岩特征与生烃动力学研究:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏, 2014, 28(4):34-42. JI Hongjie, QIU Zhen, TAO Huifei, et al. Characteristics of source rocks and hydrocarbon generation dynamics:A case study of Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Lithologic Reservoirs, 2014, 28(4):34-42.
[7] 冷振鹏, 杨胜建, 吕伟峰, 等. 致密油孔隙结构表征方法:以川中致密油储层岩心为例[J]. 断块油气田, 2016, 23(2):161-165. LENG Zhenpeng, YANG Shengjian, LYU Weifeng, et al. Pore structure characterization for tight oil reservoirs:Taking Chuanzhong tight oil reservoir cores as examples[J]. Fault-Block Oil & Gas Field, 2016, 23(2):161-165.
[8] 贾承造, 邹才能, 杨智, 等. 陆相油气地质理论在中国中西部盆地的重大进展[J]. 石油勘探与开发, 2018, 45(4):546-560. JIA Chengzao, ZOU Caineng, YANG Zhi, et al. Significant progress of continental petroleum geology theory in basins of central and western China[J]. Petroleum Exploration and Development, 2018, 45(4):546-560.
[9] YANG Liu, ZHANG Xuhui, ZHOU Tong, et al. The effects of ion diffusion on imbibition oil recovery in salt-rich shale oil reservoirs[J]. Journal of Geophysics and Engineering, 2019, 16(3):525-540.
[10] 林森虎, 邹才能, 袁选俊, 等. 美国致密油开发现状及启示[J]. 岩性油气藏, 2011, 23(4):25-30. LIN Senhu, ZOU Caineng, YUAN Xuanjun, et al. Current situation and enlightenment of tight oil development in the United States[J]. Lithologic Reservoirs, 2011, 23(4):25-30.
[11] 黄建波, 张奎, 谢斌, 等. 准噶尔盆地玛湖凹陷百口泉组低渗透率砾岩储层分类[J]. 测井技术, 2020, 44(3):305-311. HUANG Jianbo, ZHANG Kui, XIE Bin, et al. Classification and log evaluation to low permeability conglomerate reservior of Baikouquan Formation in Mahu Depression Junggar Basin[J]. Well Logging Technology, 2020, 44(3):305-311.
[12] 刘向君, 熊健, 梁利喜, 等. 基于微CT技术的致密砂岩孔隙结构特征及其对流体流动的影响[J]. 地球物理学进展, 2017, 32(3):1019-1028. LIU Xiangjun, XIONG Jian, LIANG Lixi, et al. Study on the characteristics of pore structure of tight sand based on microCT scanning and its influence on fluid flow[J]. Progress in Geophysics, 2017, 32(3):1019-1028.
[13] 贾宁洪, 吕伟峰, 常天全, 等. 高效无损岩心孔隙度精确测量新方法[J]. 石油学报, 2018, 39(7):824-828. JIA Ninghong, LYU Weifeng, CHANG Tianquan, et al. A new method for precisely measuring core porosity with high efficiency and no destruction[J]. Acta Petrolei Sinica, 2018, 39(7):824-828.
[14] BERA B, MITRA S K, VICK D. Understanding the micro structure of Berea Sandstone by the simultaneous use of micro-computed tomography(micro-CT)and focused ion beam-scanning electron microscopy(FIB-SEM)[J]. Micron, 2010, 42(5):412-418.
[15] GOLAB A, WARD C R, PERMANA A, et al. High-resolution three-dimensional imaging of coal using microfocus X-ray computed tomography, with special reference to modes of mineral occurrence[J]. International Journal of Coal Geology, 2013, 113:97-108.
[16] 王朋飞, 姜振学, 李卓, 等. 渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征[J]. 地球科学, 2017, 42(7):1147-1156. WANG Pengfei, JIANG Zhenxue, LI Zhuo, et al. Micro-nanopore structure characteristics in the Lower Cambrian Niutitang shale, Northest Chongqing[J]. Earth Science, 2017, 42(7):1147-1156.
[17] LYU Weifeng, CHEN Shiyu, GAO Yang, et al. Evaluating seepage radius of tight oil reservoir using digital core modeling approach[J]. Journal of Petroleum Science and Engineering, 2019, 178:609-615.
[18] 陈怡婷, 刘洛夫, 王梦尧, 等. 鄂尔多斯盆地西南部长6、长7储集层特征及其控制因素[J]. 岩性油气藏, 2020, 32(1):51-65. CHEN Yiting, LIU Luofu, WANG Mengyao, et al. Characteristics and controlling factors of Chang 6 and Chang 7 reservoirs in southwestern Ordos Basin[J]. Lithologic Reservoirs, 2020, 32(1):51-65.
[19] 马铨峥, 杨胜来, 杨龙, 等. 准噶尔盆地吉木萨尔凹陷芦草沟组致密储层微观孔隙特征[J]. 大庆石油地质与开发, 2020, 52(1):36-42. MA Quanzheng, YANG Shenglai, YANG Long, et al. Micro pore characteristics of Lucaogou Formation tight reservoir in Jimusaer Sag,Junggar Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2020, 52(1):36-42.
[20] CURTIS M E, SONDERGELD C H, AMBROSE R J, et al. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging[J]. AAPG Bulletin, 2012, 96(4):665-677.
[21] 张文文, 韩长城, 田继军, 等. 吉木萨尔凹陷二叠系芦草沟组层序地层划分及演化特征[J]. 岩性油气藏, 2021, 33(5):45-58. ZHANG Wenwen, HAN Changcheng, TIAN Jijun, et al. Sequence stratigraphy division and evolutionary features of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2021, 33(5):45-58.
[22] 白斌, 朱如凯, 吴松涛, 等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3):329-333. BAI Bin, ZHU Rukai, WU Songtao, et al. Multi-scale method of nano(micro)- CT study on microscopic pore structure of tight sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3):329-333.
[23] 王刚, 沈俊男, 储翔宇, 等. 基于CT三维重建的高阶煤孔裂隙结构综合表征和分析[J]. 煤炭学报, 2017, 42(8):2074-2080. WANG Gang, SHEN Junnan, CHU Xiangyu, et al. Characterization and analysis of pores and fissures of high-rank coal based on CT three-dimensional reconstruction[J]. Journal of China Coal Society, 2017, 42(8):2074-2080.
[24] 刘向君, 朱洪林, 梁利喜. 基于微CT技术的砂岩数字岩石物理实验[J]. 地球物理学报, 2014, 57(4):1133-1140. LIU Xiangjun, ZHU Honglin, LIANG Lixi. Digital rock physics of sandstone based on micro-CT technology[J]. Chinese Journal of Geophysics, 2014, 57(4):1133-1140.
[25] 郝乐伟, 王琪, 唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013, 25(5):123-128. HAO Lewei, WANG Qi,TANG Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013, 25(5):123-128.
[26] 李佳琦, 陈蓓蓓, 孔明炜, 等. 页岩油储集层数字岩心重构及微尺度下渗流特征:以吉木萨尔凹陷二叠系芦草沟组页岩油为例[J]. 新疆石油地质, 2019, 40(3):319-327. LI Jiaqi, CHEN Beibei, KONG Mingwei, et al. Digital core reconstruction and research on microscale flow characteristics of shale oilreservoir:A case of the shale oil in Permian Lucaogou Formation, Jimsar Sag[J]. Xingjiang Petroleum Geology, 2019, 40(3):319-327.
[27] PENG Jun, HAN Haodong, XIA Qingsong, et al. Fractal characteristic of microscopic pore structure of tight sandstone reservoirs in Kalpintag Formation in Shuntuoguole area, Tarim Basin[J]. Petroleum Research, 2020, 5(1):1-17.
[28] 杨甫, 贺丹, 马东民, 等. 低阶煤储层微观孔隙结构多尺度联合表征[J]. 岩性油气藏, 2020, 32(3):14-23. YANG Fu, HE Dan, MA Dongmin, et al. Multi-scale joint characterization of micro-pore structure of low-rank coal reservoir[J]. Lithologic Reservoirs, 2020, 32(3):14-23.
[1] BAI Yubin, LI Mengyao, ZHU Tao, ZHAO Jingzhou, REN Haijiao, WU Weitao, WU Heyuan. Geochemical characteristics of source rocks and evaluation of shale oil “sweet spot”of Permian Fengcheng Formation in Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 110-121.
[2] WANG Yifeng, TIAN Jixian, LI Jian, QIAO Tong, LIU Chenglin, ZHANG Jingkun, SHA Wei, SHEN Xiaoshuang. Geochemical characteristics of Permian condensate oil and gas and phase types in southwest of Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(6): 149-159.
[3] HONG Zhibin, WU Jia, FANG Peng, YU Jinyang, WU Zhengyu, YU Jiaqi. Heterogeneity of soluble organic matter in shale and occurrence state of shale oil under nanoconfinement [J]. Lithologic Reservoirs, 2024, 36(6): 160-168.
[4] WEI Chenglin, ZHANG Fengqi, JIANG Qingchun, LU Xuesong, LIU Gang, WEI Yanzhao, LI Shubo, JIANG Wenlong. Formation mechanism and evolution characteristics of overpressure in deep Permian in eastern Fukang Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 167-177.
[5] YANG Haibo, FENG Dehao, YANG Xiaoyi, GUO Wenjian, HAN Yang, SU Jiajia, YANG Huang, LIU Chenglin. Characteristics of source rocks and thermal evolution simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(5): 156-166.
[6] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[7] BAO Hanyong, ZHAO Shuai, ZHANG Li, LIU Haotian. Exploration achievements and prospects for shale gas of Middle-Upper Permian in Hongxing area,eastern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(4): 12-24.
[8] SHEN Youyi, WANG Kaifeng, TANG Shuheng, ZHANG Songhang, XI Zhaodong, YANG Xiaodong. Geological modeling and“sweet spot”prediction of Permian coal measures shale reservoirs in Yushe-Wuxiang block,Qinshui Basin [J]. Lithologic Reservoirs, 2024, 36(4): 98-108.
[9] TANG Shukai, GUO Tiankui, WANG Haiyang, CHEN Ming. Numerical simulation of fracture propagation law of in-fracture temporary plugging and diverting fracturing in tight reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 169-177.
[10] XU Tianlu, WU Chengmei, ZHANG Jinfeng, CAO Aiqiong, ZHANG Teng. Natural fracture characteristics and fracture network simulation in shale reservoirs of Permian Lucaogou Formation in Jimsar Sag [J]. Lithologic Reservoirs, 2024, 36(4): 35-43.
[11] WANG Hongbo, ZHANG Lei, CAO Qian, ZHANG Jianwu, PAN Xing. Sedimentary model of fluvial fan of Permian He-8 member in Ordos Basin and its exploration significance [J]. Lithologic Reservoirs, 2024, 36(3): 117-126.
[12] HE Wenyuan, ZHAO Ying, ZHONG Jianhua, SUN Ningliang. Characteristics and significance of micron pores and micron fractures in shale oil reservoirs of Cretaceous Qingshankou Formation in Gulong sag,Songliao Basin [J]. Lithologic Reservoirs, 2024, 36(3): 1-18.
[13] CHENG Jing, YAN Jianping, SONG Dongjiang, LIAO Maojie, GUO Wei, DING Minghai, LUO Guangdong, LIU Yanmei. Low resistivity response characteristics and main controlling factors of shale gas reservoirs of Ordovician Wufeng Formation-Silurian Longmaxi Formation in Changning area,southern Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(3): 31-39.
[14] SHAO Wei, ZHOU Daorong, LI Jianqing, ZHANG Chengcheng, LIU Tao. Key factors and favorable exploration directions for oil and gas enrichment in back margin sag of thrust nappe in Lower Yangtze [J]. Lithologic Reservoirs, 2024, 36(3): 61-71.
[15] DUAN Yifei, ZHAO Weiwei, YANG Tianxiang, LI Fukang, LI Hui, WANG Jianan, LIU Yuchen. Source-reservoir characteristics and accumulation rules of shale gas of Permian Shanxi Formation in Yan'an area, Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(3): 72-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: