Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (3): 152-160.doi: 10.12108/yxyqc.20230313

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin

BU Xuqiang, WANG Laiyuan, ZHU Lianhua, HUANG Cheng, ZHU Xiuxiang   

  1. Research Institute of Exploration and Development, Northwest Oilfield Company, Sinopec, Urumqi 830000, China
  • Received:2022-08-18 Revised:2022-09-28 Published:2023-04-25

Abstract: Shunbei oil and gas field is an important oil and gas producing area in Tarim Basin. Based on drilling performance,core analysis,logging and seismic data,combined with acid fracturing curve and well test data, the characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field of Tarim Basin were studied. The results show that:(1)Fault-controlled fractured-vuggy reservoir of Ordovician in Shunbei oil and gas field is a special type of reservoir formed with the development of strike-slip faults. Vertical to the fault zone,multiple groups of fractured-vuggy aggregates composed of bedrockfracture zone-cave zone are developed,and cave zone and fracture zone are the main reservoir spaces. The seismic identification feature of large-scale reservoirs is fault-bead-disorder strong reflection.(2)The reconstruction curve of large-scale fault-controlled fractured-vuggy reservoirs in the study area has the characteristics of low initial pump pressure,large maximum pressure drop and low pump stop pressure. The drilling pressure recovery curves of fault zones ①,④ and ⑧ of the NE fault system are in a W-box shape.(3)According to the characteristics of seismic response and the shape of well test pressure recovery curve,the fault-controlled fractured-vuggy reservoirs in the study area can be divided into two types: cave type and fracture type,and they can be subdivided into four categories according to the shapes of pressure recovery curves: fractured-multi-cave type,fracturedcave type,cave-fracture type and fracture type.(4)The fault-controlled fractured-vuggy reservoirs in the study area have oil source from Yuertusi Formation,and migrate along strike-slip faults. The pores and fractures are the reser-voir spaces, and tight carbonate rocks and thick mudstones are the caprocks.

Key words: Acidizing fracturing curve, well test pressure recovery curve, fault zone, fault-controlled fracturedvuggy reservoir, Ordovician, Shunbei oil and gas field, Tarim Basin

CLC Number: 

  • TE122.2
[1] 漆立新.塔里木盆地顺北超深断溶体油藏特征与启示[J].中国石油勘探, 2020, 25(1):102-111. QI Lixin. Characteristics and inspiration of ultra-deep faultkarst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1):102-111.
[2] 云露,朱秀香.一种新型圈闭:断控缝洞型圈闭[J].石油与天然气地质, 2022, 43(1):34-42. YUN Lu, ZHU Xiuxiang. A new trap type:Fault-controlled fracture-vuggy trap[J]. Oil&Gas Geology, 2022, 43(1):34-42.
[3] 马永生,蔡勋育,云露,等.塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J].石油勘探与开发, 2022, 49(1):1-17. MA Yongsheng, CAI Xunyu, YUN Lu, et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(1):1-17.
[4] 吕海涛,韩俊,张继标,等.塔里木盆地顺北地区超深碳酸盐岩断溶体发育特征与形成机制[J].石油实验地质, 2021, 43(1):14-22. LYU Haitao, HAN Jun, ZHANG Jibiao, et al. Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin[J]. Petroleum Geology&Experiment, 2021, 43(1):14-22.
[5] 云露.顺北地区奥陶系超深断溶体油气成藏条件[J].新疆石油地质, 2021, 42(2):136-142. YUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2):136-142.
[6] 云露,邓尚.塔里木盆地深层走滑断裂差异变形与控储控藏特征:以顺北油气田为例[J].石油学报, 2022, 43(6):770-787. YUN Lu, DENG Shang. Structural styles of deep strike-slip in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation:A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica, 2022, 43(6):770-787.
[7] 何登发,周新源,杨海军,等.塔里木盆地克拉通内古隆起的成因机制与构造类型[J].地学前缘, 2008, 15(2):207-221. HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2):207-221.
[8] 田方磊,何登发,陈槚俊,等.塔里木盆地顺托果勒低隆及邻区加里东中期运动面的构造性质[J].地质科学, 2020, 55(3):813-828. TIAN Fanglei, HE Dengfa, CHEN Jiajun, et al. Structural properties of the Mid-Caledonian Movement surfaces in the Shuntuoguole lower uplift and adjacent area, Tarim Basin[J]. Chinese Journal of Geology, 2020, 55(3):813-828.
[9] 王坤,刘伟,黄擎宇,等.多资料约束下的塔里木盆地寒武系层序地层划分与对比[J].海相油气地质, 2016, 21(3):1-12. WANG Kun, LIU Wei, HUANG Qingyu, et al. Division and correlation of Cambrian stratigraphic sequences under multiple data constraint, Tarim Basin[J]. Marine Origin Petroleum Geology, 2016, 21(3):1-12.
[10] 王素英,张翔,田景春,等.塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J].岩性油气藏, 2021, 33(5):81-94. WANG Suying, ZHANG Xiang, TIAN Jingchun, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5):81-94.
[11] 彭军,夏梦,曹飞,等.塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J].岩性油气藏, 2022, 34(2):17-30. PENG Jun, XIA Meng, CAO Fei, et at. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2):17-30.
[12] OTTE SEN S. Wellbore stability in fractured rock[R]. SPE 128728, 2010.
[13] 林波,张旭,况安鹏,等.塔里木盆地走滑断裂构造变形特征及油气意义:以顺北地区1号和5号断裂为例[J].石油学报, 2021, 42(7):906-923. LIN Bo, ZHANG Xu, KUANG Anpeng, et al. Structural deformation characteristics of strike-slip faults in Tarim Basin and its hydrocarbon significance:A case of Shunbei No. 1 fault and No.5 fault[J]. Acta Petrolei Sinica, 2021, 42(7):906-923.
[14] 程飞.缝洞型碳酸盐岩油藏储层类型动静态识别方法:以塔里木盆地奥陶系为例[J].岩性油气藏, 2017, 29(3):76-82. CHENG Fei. Integrated dynamic and static identification method of fractured-vuggy carbonate reservoirs:A case from the Ordovician in Tarim Basin[J]. Lithologic Reservoirs, 2017, 29(3):76-82.
[15] 云露.顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J].中国石油勘探, 2021, 26(3):41-52. YUN Lu. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance, Tarim Basin[J]. China Petroleum Exploration, 2021, 26(3):41-52.
[16] 赵军,海川,张承森.测井储层描述在塔中I号礁滩体中的应用[J].岩性油气藏, 2008, 20(2):86-90. ZHAO Jun, HAI Chuan, ZHANG Chengsen. Application of log data in reef flat reservoir description in Tazhong No. 1 slope break[J]. Lithologic Reservoirs, 2008, 20(2):86-90.
[17] 邹榕,徐中祥,张晓明,等.顺北和托甫台区块奥陶系断裂结构单元测井响应特征初探[J].油气藏评价与开发, 2020, 10(2):18-23. ZOU Rong, XU Zhongxiang, ZHANG Xiaoming, et al. Log response characteristics of Ordovician fracture unit in Shunbei and Tuofutai block[J]. Reservoir Evaluation and Development, 2020, 10(2):18-23.
[18] 刘智颖,章成广,唐军,等.裂缝对岩石电阻率的影响及其在含气饱和度计算中的应用[J].岩性油气藏, 2018, 30(2):120-128. LIU Zhiying, ZHANG Chengguang, TANG Jun, et al. Influence of fracture on rock resistivity and its application in saturation calculation[J]. Lithologic Reservoirs, 2018, 30(2):120-128.
[19] 刘军,李伟,龚伟,黄超.顺北地区超深断控储层地震识别与描述[J].新疆石油地质, 2021, 42(2):238-245. LIU Jun, LI Wei, GONG Wei, et al. Seismic identification and description of ultra-deep fault-controlled reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2):238-245.
[20] 唐照星,曹自成,汪新文,等.塔里木盆地古城墟隆起鹰山组内幕储层特征及影响因素[J].岩性油气藏, 2013, 25(4):44-49. TANG Zhaoxing, CAO Zicheng, WANG Xinwen, et al. Reservoir characteristics and influencing factors in the inner Yingshan Formation in Guchengxu uplift, Tarim Basin[J]. Lithologic Reservoirs, 2013, 25(4):44-49.
[21] 李宗杰,杨子川,李海英,等.顺北沙漠区超深断溶体油气藏三维地震勘探关键技术[J].石油物探, 2020, 59(2):283-294. LI Zongjie, YANG Zichuan, LI Haiying, et al. Three-dimensional seismic exploration method for ultra-deep fault-related dissolution reservoirs in the Shunbei desert area[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):283-294.
[22] 刘宝增,漆立新,李宗杰,等.顺北地区超深层断溶体储层空间雕刻及量化描述技术[J].石油学报, 2020, 41(4):412-420. LIU Baozeng, QI Lixin, LI Zongjie, et al. Spatial characterization and quantitative description technology for ultra-deep faultkarst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica, 2020, 41(4):412-420.
[23] 牟建业,李双明,赵鑫,等.基于真实孔隙空间分布的酸蚀蚓孔扩展规律数值模拟研究[J].科学技术与工程, 2014, 14(35):40-46. MOU Jianye, LI Shuangming, ZHAO Xin, et al. Modeling wormhole propataiton behavior based on real pore spatial distributions[J]. Science Technology and Engineering, 2014, 14(35):40-46.
[24] 齐宁,李柏杨,方明君,等.基于碳酸盐岩酸化溶蚀形态的酸液最优注入速度界限[J].中国石油大学学报(自然科学版), 2017, 41(5):117-122. QI Ning, LI Boyang, FANG Mingjun, et al. Injection rate optimization for acidizing process of carbonate rocks based on dissolution morphology[J]. Journal of China University of Petroleum (Edition of Natural Science), 2017, 41(5):117-122.
[25] 张雄,王晓之,郭天魁,等.顺北油田缝内转向压裂暂堵剂评价实验[J].岩性油气藏, 2020, 32(5):170-176. ZHANG Xiong, WANG Xiaozhi, GUO Tiankui, et al. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei Oilfield[J]. Lithologic Reservoirs, 2020, 32(5):170-176.
[26] 杜鑫,李冬梅,徐燕东,等.井洞相连的缝洞型油藏试井新模型[J].水动力学研究与进展(A辑), 2018, 33(5):552-561. DU Xin, LI Dongmei, XU Yandong, et al. A new analytical well test model for fractured vuggy reservoirs with vug connecting with wellbore[J]. Chinese Journal of Hydrodynamics, 2018, 33(5):552-561.
[1] SONG Xingguo, CHEN Shi, YANG Minghui, XIE Zhou, KANG Pengfei, LI Ting, CHEN Jiuzhou, PENG Zijun. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution [J]. Lithologic Reservoirs, 2023, 35(3): 99-109.
[2] LIU Zhongquan, ZHAO Leqiang, ZENG Zhiping, TIAN Jijun, LI Zhengqiang, LUO Jinchang, HU Meiling. Shale oil accumulation conditions of Permian Lucaogou Formation in Fukang fault zone,Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(3): 126-137.
[3] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, ZHENG Jianfeng, ZHENG Xingping, YANG Zhao. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(2): 144-158.
[4] HE Chunfeng, ZHANG Xiang, TIAN Jingchun, XIA Yongtao, YANG Yanru, CHEN Jie, WANG Xinyu. Sedimentary facies characteristics and sedimentary model of thin sand bodies of Lower Cretaceous Shushanhe Formation in Xinhe area, northern Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(1): 120-131.
[5] LIU Yongli, LI Guorong, HE Zhao, TIAN Jiaqi, LI Xiaoxiao. Sequence stratigraphic framework and platform margin belt distribution of Cambrian in northern Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(6): 80-91.
[6] LU Yingbo. Formation mechanism and percolation characteristics of secondary foamy oil by gas injection in super heavy oil [J]. Lithologic Reservoirs, 2022, 34(6): 152-159.
[7] CHEN Zhonghong, CHAI Zhi. Difference of maturity parameters of mixed crude oil and its geological significance:A case study of Ordovician in Tuofutai area,Tabei uplift [J]. Lithologic Reservoirs, 2022, 34(5): 38-49.
[8] ZHANG Fengqi, LI Yinong, LUO Julan, REN Xiaofeng, ZHANG Lanxin, ZHANG Jieyu. Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(5): 50-62.
[9] SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield [J]. Lithologic Reservoirs, 2022, 34(4): 150-158.
[10] CHEN Yuan, LIAO Faming, LYU Bo, JIA Wei, SONG Qiuqiang, WU Yan, KANG Ju, XIAN Rangzhi. Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(3): 104-116.
[11] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[12] PENG Jun, XIA Meng, CAO Fei, XIA Jingang, LI Feng. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(2): 17-30.
[13] LUO Zhenfeng, SU Zhongtang, LIAO Huihong, HUANG Wenming, MA Hui, SHE Wei. Characteristics and geological significance of stromatolite dolomite of Ma 55 submember of Ordovician Majiagou Formation in Mizhi area, central-eastern Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(2): 86-94.
[14] ZHANG Menglin, LI Guoqin, HE Jia, HENG De. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
[15] ZHANG Bing, TAN G Shuheng, XI Zhaodong, LIN Donglin, YE Yapei. Biostratigraphic characteristics and exploration significance of Wufeng-Longmaxi Formation in northwestern Hunan [J]. Lithologic Reservoirs, 2021, 33(5): 11-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAO Lewei, WANG Qi, TANG Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013, 25(5): 123 -128 .
[2] HE Jianhua,DING Wenlong,FU Jinglong,LI Ang,DAI Peng. Study on genetic type of micropore in shale reservoir[J]. Lithologic Reservoirs, 2014, 26(5): 30 -35 .
[3] XIANG Xuebing, SIMA Liqiang, WANG Liang, LI Jun, GUO Yuhao, ZHANG Hao. Pore fluid division and effective pore size calculation of shale gas reservoir: A case study of Longtan Formation in Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(4): 137 -146 .
[4] HU Hewei, LI Huiyong, XU Peng, TAO Li, HUA Xiaoli. Main controlling factors of differential enrichment of oil and gas in fault concentrated zones: a case study from Qinan step-fault zone in Qikou Sag[J]. Lithologic Reservoirs, 2020, 32(5): 34 -45 .
[5] YU Yan, ZHOU Linlang, GAN Xiaofei, HU Yan, GAN Wenjin, DENG Zhuang. A triple-porosity flow model and its nonlinear flow characteristics with considering quadratic pressure gradient[J]. Lithologic Reservoirs, 2020, 32(5): 143 -150 .
[6] LI Mengying, ZHU Rukai, HU Suyun. Geological characteristics and resource potential of overseas terrestrial shale oil[J]. Lithologic Reservoirs, 2022, 34(1): 163 -174 .
[7] ZHANG Jigang, DU Meng, CHEN Chao, QIN Ming, JIA Ninghong, LYU Weifeng, DING Zhenhua, XIANG Yong. Quantitative characterization of pore structure of shale reservoirs of Permian Lucaogou Formation in Jimsar Sag[J]. Lithologic Reservoirs, 2022, 34(4): 89 -102 .
[8] WANG Jiangong, LI Jiangtao, LI Xiang, GAO Yanfang, ZHANG Ping, SUN Xiujian, BAI Yadong, ZUO Mingtao. Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(3): 1 -17 .
[9] ZHANG Zhenhua, ZHANG Xiaojun, ZHONG Dakang, GOU Yingchun, ZHANG Shiming. Reservoir characteristics and main controlling factors of upper member of Paleogene Xiaganchaigou Formation in Nanyishan area, northwestern Qaidam Basin[J]. Lithologic Reservoirs, 2023, 35(3): 29 -39 .
[10] BAI Yang, ZHANG Xiaolei, GANG Wenzhe, ZHANG Zhongyi, YANG Shangru, PANG Jinlian, CAO Jingjing, HOU Yunchao. Characteristics and genesis of Upper Triassic Chang 8 reservoir with low oil saturation in northern Pingliang area, Ordos Basin[J]. Lithologic Reservoirs, 2023, 35(3): 66 -75 .
TRENDMD: