Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (2): 124-135.doi: 10.12108/yxyqc.20240212

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No. 1 fault zone,Tarim Basin

CHEN Shuyang1, HE Yunfeng1, WANG Lixin2, SHANG Haojie2, YANG Xinrui2, YIN Yanshu2   

  1. 1. Sinopec Northwest Oilfield Company, Urumqi 830000, China;
    2. Key Laboratory of Exploration Technologies for Oil and Gas Resources, Ministry of Education, Yangtze University, Wuhan 430100, China
  • Received:2023-01-12 Revised:2023-09-28 Online:2024-03-01 Published:2024-03-06

Abstract: Based on the seismic,logging,core and dynamic data,the internal architecture of fault-controlled carbonate reservoirs in Shunbei No. 1 fault zone of Tarim Basin was divided. Based on the hierarchical division, a 3D geological model was established through seismic data attribute extraction and conversion,deep learning, target-based schematic point process simulation,and discrete fracture network simulation(DFN). Numerical simulation of oil and gas reserves and reservoirs was carried out with the model,and the fitting results were compared with the actual production data. The results show that:(1)The Ordovician fault-controlled reservoirs in the study area were categorized into five levels,from large to small,including strike-slip fault-influenced zones, fault-controlled bodies,cave-like,intra-cave-like cluster-filling and fracture zones.(2)The strike-slip faultinfluenced zones has segmentation due to stress differences,which can be subdivided into extrusion section, pullout section and translation section. The fault-control bodies develop six kinds of planar combination styles, including fault intersection type and single-branch slip type in the pullout section,double-fault staggered type and double-fault intersection type in the translation section,and double-fault twisted type and double-fault intersection type in the extrusion section. The cave-like is characterized by bead-like reflections on the seismic section. The intra-cave-like is divided into fenestration and inter-fenestration(bedrock),and the fenestration can be further divided into clusters(breccia zones)and inter-clusters(fracture zones),and the whole is characterized by fenestration structure,with better physical properties of the clusters. The fracture zones are the main reservoir space for cave-like structures,which are more developed within clusters than between clusters,and more developed in Yijianfang Formation than in Yingshan Formation. High-angle fractures are mainly developed in Yijianfang Formation and Yingshan Formation,while horizontal fractures are mainly developed at the joints between the two.(3)The error between the oil and gas reserves predicted by the geological model and the geological analysis reserves is 1.75%. The simulated production well formation pressure and cumulative liquid production results of the model are highly consistent with production performance,with a fitting error of less than 10%.

Key words: strike-slip fault zone, fault-controlled bodies, cave-like, carbonate reservoir, 3D geological modeling, Deep learning, Ordovician, Shunbei No. 1 fault zone, Tarim Basin

CLC Number: 

  • TE122.2
[1] 刘宝增,漆立新,李宗杰,等. 顺北地区超深层断溶体储层空间雕刻及量化描述技术[J]. 石油学报,2020,41(4):412-420. LIU Baozeng,QI Lixin,LI Zongjie,et al. Spatial characterization and quantitative description technology for ultra-deep faultkarst reservoirs in the Shunbei area[J]. Acta Petrolei Sinica, 2020,41(4):412-420.
[2] 刘军,李伟,龚伟,等. 顺北地区超深断控储集体地震识别与描述[J]. 新疆石油地质,2021,42(2):238-245. LIU Jun,LI Wei,GONG Wei,et al. Seismic identification and description of ultra-deep fault-controlled reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology,2021,42(2):238-245.
[3] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质,2015,36(3):347-355. LU Xinbian,HU Wenge,WANG Yan,et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area,Tarim Basin[J]. Oil & Gas Geology,2015,36(3):347-355.
[4] 彭军,夏梦,曹飞,等. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏,2022,34(2):17-30. PENG Jun,XIA Meng,CAO Fei,et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area,Tarim Basin[J]. Lithologic Reservoirs,2022,34(2):17-30.
[5] 贾承造,马德波,袁敬一,等. 塔里木盆地走滑断裂构造特征、形成演化与成因机制[J]. 天然气工业,2021,41(8):81-91. JIA Chengzao,MA Debo,YUAN Jingyi,et al. Structural characteristics,formation & evolution and genetic mechanisms of strike-slip faults in the Tarim Basin[J]. Natural Gas Industry, 2021,41(8):81-91.
[6] 邓尚,刘雨晴,刘军,等. 克拉通盆地内部走滑断裂发育、演化特征及其石油地质意义:以塔里木盆地顺北地区为例[J]. 大地构造与成矿学,2021,45(6):1111-1126. DENG Shang,LIU Yuqing,LIU Jun,et al. Structural styles and evolution models of intracratonic strike-slip faults and the implications for reservoir exploration and appraisal:A case study of the Shunbei area,Tarim Basin[J]. Geotectonica et Metallogenia,2021,45(6):1111-1126.
[7] 马永生,何治亮,赵培荣,等. 深层-超深层碳酸盐岩储层形成机理新进展[J]. 石油学报,2019,40(12):1415-1425. MA Yongsheng,HE Zhiliang,ZHAO Peirong,et al. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica,2019,40(12):1415-1425.
[8] 云露,邓尚. 塔里木盆地深层走滑断裂差异变形与控储控藏特征:以顺北油气田为例[J]. 石油学报,2022,42(6):770-787. YUN Lu,DENG Shang. Structural styles of deep strike-slip faults in Tarim Basin and the characterisrics of their contral on reservoir formation and hydrocarbon accumulation:A case study of Shunbei oil and gas field[J]. Acta Petrolei Sinica,2022,42(6):770-787.
[9] 马永生,蔡勋育,云露,等. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展[J]. 石油勘探与开发, 2022,49(1):1-17.MA Yongsheng,CAI Xunyu,YUN Lu,et al. Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field,Tarim Basin, NW China[J]. Petroleum Exploration and Development,2022, 49(1):1-17.
[10] 商晓飞,段太忠,张文彪,等. 断控岩溶主控的缝洞型碳酸盐岩内部溶蚀相带表征:以塔河油田10区奥陶系油藏为例[J]. 石油学报,2020,41(3):329-341. SHANG Xiaofei,DUAN Taizhong,ZHANG Wenbiao,et al. Characterization of dissolution facies belt in fracture-cavity carbonate rocks mainly controlled by fault-controlling karst:A case study of Ordovician reservoirs in the block 10 of Tahe Oilfield[J]. Acta Petrologica Sinica,2020,41(3):329-341.
[11] 程洪,张杰,张文彪. 断溶体储层类型识别、预测及发育模式探讨:以塔里木盆地塔河十区TH10421单元为例[J]. 石油与天然气地质,2020,41(5):996-1003. CHENG Hong,ZHANG Jie,ZHANG Wenbiao. Discussion on identification,prediction and development pattern of faultedkarst carbonate reservoirs:A case study of TH10421 fracturecavity unit in block 10 of Tahe oilfield,Tarim Basin[J]. Oil & Gas Geology,2020,41(5):996-1003.
[12] 李阳,康志江,薛兆杰,等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发,2018,45(4):669-678. LI Yang,KANG Zhijiang,XUE Zhaojie,et al. Theories and practices of carbonate reservoirs development in China[J]. Petroleum Exploration and Development,2018,45(4):669-678.
[13] 张雄,王晓之,郭天魁,等. 顺北油田缝内转向压裂暂堵剂评价实验[J]. 岩性油气藏,2020,32(5):170-176. ZHANG Xiong,WANG Xiaozhi,GUO Tiankui,et al. Experiment on evaluation of temporary plugging agent for in-fracture steering fracturing in Shunbei oilfield[J]. Lithologic Reservoirs, 2020,32(5):170-176.
[14] 李冬梅,李会会,朱苏阳,等. 断溶体油气藏流动物质平衡方法[J]. 岩性油气藏,2022,34(1):154-162. LI Dongmei,LI Huihui,ZHU Suyang,et al. Modified flowing material balance method for fault-karst reservoirs[J]. Lithologic Reservoirs,2022,34(1):154-162.
[15] 鲁新便,荣元帅,李小波,等. 碳酸盐岩缝洞型油藏注采井网构建及开发意义:以塔河油田为例[J]. 石油与天然气地质, 2017,38(4):658-664. LU Xinbian,RONG Yuanshuai,LI Xiaobo,et al. Construction of injection-production well pattern in fractured-vuggy carbonate reservoir and its development significance:A case study from Tahe Oilfield in Tarim Basin[J]. Oil & Gas Geology,2017,38(4):658-664.
[16] 张文彪,段太忠,李蒙,等. 塔河油田托甫台区奥陶系断溶体构型类型及表征方法[J]. 石油勘探与开发,2020,47(6):1-12. ZHANG Wenbiao,DUAN Taizhong,LI Meng,et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai,Tahe oilfield,NW China[J]. Petroleum Exploration and Development,2020,47(6):1-12.
[17] 张文彪,张亚雄,段太忠,等. 塔里木盆地塔河油田托甫台区奥陶系碳酸盐岩断溶体系层次建模方法[J]. 石油与天然气地质,2022,43(1):207-218. ZHANG Wenbiao,ZHANG Yaxiong,DUAN Taizhong,et al. Hierarchy modeling of the Ordovician fault-karst carbonate reservoir in Tuoputai area,Tahe Oilfield,Tarim Basin,NW China[J]. Oil & Gas Geology,2022,43(1):207-218.
[18] 张文彪,段太忠,赵华伟,等. 断控岩溶体系空间结构差异性与三维建模:以顺北1 号断裂带为例[J]. 科学技术与工程, 2021,21(28):12094-12108. ZHANG Wenbiao,DUAN Taizhong,ZHAO Huawei,et al. Hierarchical characteristics and 3D modeling of fault-controlled paleokarst systems:A case study of shunbei1 strike-slip fault zone[J]. Science Technology and Engineering,2021,21(28):12094-12108.
[19] 张文彪,段太忠,何治亮,等. 碳酸盐岩古溶洞层级约束地质建模方法探讨:以塔河油田奥陶系某缝洞单元为例[J]. 地质科技通报,2022,41(3):273-281. ZHANG Wenbiao,DUAN Taizhong,HE Zhiliang,et al. Hierarchical constraint geological modelling method for carbonate paleokarst caves:A case study of Ordovician fracture-cavern unit in Tahe Oilfield[J]. Bulletin of Geological Science and Technology,2022,41(3):273-281.
[20] 何治亮,孙建芳,郭攀红,等. 碳酸盐岩储集层知识库构建方法及其在缝洞型油藏地质建模中的应用[J]. 石油勘探与开发,2021,48(4):710-718. HE Zhiliang,SUN Jianfang,GUO Panhong,et al. Construction method of carbonate reservoir knowledge base and its application in fracture-cavity reservoir geological modeling[J]. Petroleum Exploration and Development,2021,48(4):710-718.
[21] 刘阳平,吴博然,于忠良,等. 辫状河砂岩储层三维地质模型重构技术:以冀东油田高尚堡区块新近系馆陶组为例[J]. 岩性油气藏,2022,34(4):159-170. LIU Yangping,WU Boran,YU Zhongliang,et al. Reconstruction of 3D geological model of braided river sandstone reservoirs:A case study of Neogene Guantao Formation in Gaoshangpu block,Jidong Oilfield[J]. Lithologic Reservoirs,2022,34(4):159-170.
[22] 王晖,胡光义. 渤海C油田潜山裂缝型储集层随机离散裂缝网络模型的实现与优选方法[J]. 岩性油气藏,2012,24(1):74-79. WANG Hui,HU Guangyi. Realization and optimization of discrete fracture network model of buried hill fractured reservoir in C oilfield,Bohai Bay[J]. Lithologic Reservoirs,2012,24(1):74-79.
[1] YANG Wuyang, WEI Xinjian, LI Haishan. The past,present and future of intelligent geophysical technology [J]. Lithologic Reservoirs, 2024, 36(2): 170-188.
[2] SUN Hanxiao, XING Fengcun, XIE Wuren, QIAN Hongshan. Lithofacies paleogeography evolution of Late Ordovician in Sichuan Basin and its surrounding areas [J]. Lithologic Reservoirs, 2024, 36(1): 121-135.
[3] DU Jiangmin, CUI Zihao, JIA Zhiwei, ZHANG Yi, NIE Wancai, LONG Pengyu, LIU Boyuan. Sedimentary characteristics of Ma 55 sub-member of Ordovician Majiagou Formation in Sulige area,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(5): 37-48.
[4] ZHU Xiuxiang, ZHAO Rui, ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(5): 131-138.
[5] BU Xuqiang, WANG Laiyuan, ZHU Lianhua, HUANG Cheng, ZHU Xiuxiang. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(3): 152-160.
[6] SONG Xingguo, CHEN Shi, YANG Minghui, XIE Zhou, KANG Pengfei, LI Ting, CHEN Jiuzhou, PENG Zijun. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution [J]. Lithologic Reservoirs, 2023, 35(3): 99-109.
[7] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, ZHENG Jianfeng, ZHENG Xingping, YANG Zhao. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(2): 144-158.
[8] HE Chunfeng, ZHANG Xiang, TIAN Jingchun, XIA Yongtao, YANG Yanru, CHEN Jie, WANG Xinyu. Sedimentary facies characteristics and sedimentary model of thin sand bodies of Lower Cretaceous Shushanhe Formation in Xinhe area, northern Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(1): 120-131.
[9] LIU Yongli, LI Guorong, HE Zhao, TIAN Jiaqi, LI Xiaoxiao. Sequence stratigraphic framework and platform margin belt distribution of Cambrian in northern Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(6): 80-91.
[10] CHEN Zhonghong, CHAI Zhi. Difference of maturity parameters of mixed crude oil and its geological significance:A case study of Ordovician in Tuofutai area,Tabei uplift [J]. Lithologic Reservoirs, 2022, 34(5): 38-49.
[11] ZHANG Fengqi, LI Yinong, LUO Julan, REN Xiaofeng, ZHANG Lanxin, ZHANG Jieyu. Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(5): 50-62.
[12] SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield [J]. Lithologic Reservoirs, 2022, 34(4): 150-158.
[13] CHEN Yuan, LIAO Faming, LYU Bo, JIA Wei, SONG Qiuqiang, WU Yan, KANG Ju, XIAN Rangzhi. Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(3): 104-116.
[14] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[15] PENG Jun, XIA Meng, CAO Fei, XIA Jingang, LI Feng. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(2): 17-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: