Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (3): 99-109.doi: 10.12108/yxyqc.20230309

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution

SONG Xingguo1,2, CHEN Shi1,2, YANG Minghui1,2, XIE Zhou3, KANG Pengfei3, LI Ting3, CHEN Jiuzhou3, PENG Zijun3   

  1. 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum(Beijing), Beijing 102249, China;
    2. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    3. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
  • Received:2022-05-29 Revised:2022-07-13 Online:2023-05-01 Published:2023-04-25

Abstract: The data of 3D seismic,multi-layer coherence analysis,amplitude change rate,reservoir core analysis and oil and gas distribution were used to analyze the spatial distribution characteristics, activity intensity and stages of F16 fault in Fuman oilfield of Tarim Basin, and the control effects of fault on reservoir and accumulation were discussed. The results show that: (1)The F16 fault in Fuman oilfield has the characteristics of plane segmentation and vertical stratification. On plane, it can be divided into three segments from north to south,the northern segment spreads along NE 10° and develops horsetail-like structure,the middle segment spreads along NE 20° and is in the transition position of fault strike,mainly develops left-order oblique row,and the southern segment spreads along NE 30° with strong linear extension characteristics, mainly right-order oblique sequence. Vertically, it can be divided into deep structural deformation layer below the bottom of Upper Cambrian(TЄ3)and the shallow structural deformation layer of the bottom of Upper Cambrian to the top of Ordovician Yijianfang Formation (TO3t). The deep fault activity is weak, the branch is less developed, only the local flower structure is developed. While the shallow fault activity is strong,the flower structure is generally developed,and there exists the phenomenon of “multi-flower superposition” and stratigraphic co-deposition in the fracture zone vertically.(2)The activities of F16 fault in Fuman oilfield can be divided into two stages: early Caledonian and middle Caledonian. The middle Caledonian is the main active stage,with stronger intensity and multi-episode activation characteristics,and the activity intensity is strong in the north and weak in the south on plane, showing the characteristics of shallow upper arch and deep decline in the vertical direction,and the shallow fault activity is stronger.(3)The reservoirs in the study area are mainly fault-controlled fracture-cave reservoirs,controlled by fault fragmentation, distributed in a strip along the F16 fault zone on plane,and superimposed deep and shallow layers vertically. Affected by the distribution characteristics of Middle Cambrian gypsum salt rocks,the F16 fault zone has the oil and gas distribution characteristics of “south oil and north gas”.

Key words: F16 fault, strike-slip fault, fault-controlled reservoir, fault-controlled accumulation, fracture-vuggy carbonate reservoir, Upper Cambrian, Ordovician Yijianfang Formation, Fuman oilfield, Tarim Basin

CLC Number: 

  • TE122.2
[1] SYLVESTER A G. Strike slip fault[J]. Geological Society of America Bulletin, 1988, 100(11):1666-1703.
[2] 田军,杨海军,朱永峰,等.塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J].石油学报, 2021, 42(8):971-985. TIAN Jun, YANG Haijun, ZHU Yongfeng, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oil field, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(8):971-985.
[3] 杨海军,邓兴梁,张银涛,等.塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义[J].中国石油勘探, 2020, 25(3):13-23. YANG Haijun, DENG Xingliang, ZHANG Yintao, et al. Great discovery and its significance of exploration for Ordovician ultradeep fault-controlled carbonate reservoirs of well Manshen 1 in Tarim Basin[J]. China Petroleum Exploration, 2020, 25(3):13-23.
[4] HAN Xiaoying, TANG Liangjie, DENG Shang, et al. Spatial characteristics and controlling factors of the strike-slip fault zones in the northern slope of Tazhong Uplift, Tarim Basin:Insight from 3D seismic data[J]. Acta Geologica Sinica (English Edition), 2020, 94(2):516-529.
[5] YUAN Haowei, CHEN Shuping, NENG Yuan, et al. Composite strike-slip deformation belts and their control on oil and gas reservoirs:A case study of the northern part of the Shunbei 5 strike-slip deformation belt in Tarim Basin, northwestern China[J]. Frontiers in Earth Science, 2021, 9:755050.
[6] TENG Changyu, CAI Zhongxian, HAO Fang, et al. Structural geometry and evolution of an intracratonic strike-slip fault zone:A case study from the north SB5 fault zone in the Tarim Basin, China[J]. Journal of Structural Geology, 2020, 140:104159.
[7] 江同文,韩剑发,邬光辉,等.塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素[J].石油勘探与开发, 2020, 47(2):213-224. JIANG Tongwen, HAN Jianfa, WU Guanghui, et al. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(2):213-224.
[8] 杨率,邬光辉,朱永峰,等.塔里木盆地北部地区超深断控油藏关键成藏期[J].石油勘探与开发, 2022, 49(2):1-13. YANG Shuai, WU Guanghui, ZHU Yongfeng, et al. Key oil accumulation periods of ultra-deep fault-controlled oil reservoir in northern Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2022, 49(2):1-13.
[9] 汪如军,王轩,邓兴梁,等.走滑断裂对碳酸盐岩储层和油气藏的控制作用:以塔里木盆地北部坳陷为例[J].天然气工业, 2021, 41(3):10-20. WANG Rujun, WANG Xuan, DENG Xingliang, et al. Control effect of strike-slip faults on carbonate reservoirs and hydrocarbon accumulation:A case study of the northern depression in the Tarim Basin[J]. Natural Gas Industry, 2021, 41(3):10-20.
[10] 罗彩明,梁鑫鑫,黄少英,等.塔里木盆地塔中隆起走滑断裂的三层结构模型及其形成机制[J].石油与天然气地质, 2022, 43(1):118-131. LUO Caiming, LIANG Xinxin, HUANG Shaoying, et al. Threelayer structure model of strike-slip faults in the Tazhong uplift and its formation mechanism[J]. Oil&Gas Geology, 2022, 43(1):118-131.
[11] 能源,杨海军,邓兴梁.塔中古隆起碳酸盐岩断裂破碎带构造样式及其石油地质意义[J].石油勘探与开发, 2018, 45(1):40-50. NENG Yuan, YANG Haijun, DENG Xingliang. Structural patterns of fault broken zones in carbonate rocks and their influences on petroleum accumulation in Tazhong paleo-uplift, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1):40-50.
[12] 何登发,贾承造,李德生,等.塔里木多旋回叠合盆地的形成与演化[J].石油与天然气地质, 2005, 26(1):64-77. HE Dengfa, JIA Chengzao, LI Desheng, et al. Formation and evolution of polycyclic superimposed Tarim Basin[J]. Oil&Gas Geology, 2005, 26(1):64-77.
[13] 贾承造.塔里木盆地构造特征与油气聚集规律[J].新疆石油地质, 1999, 20(3):3-9. JIA Chengzao. Structural characteristics and oil/gas accumulation regularity in Tarim Basin[J]. Xinjiang Petroleum Geology, 1999, 20(3):3-9.
[14] 汤良杰.塔里木盆地构造演化与构造样式[J].地球科学——中国地质大学学报, 1994, 19(6):742-754. TANG Liangjie. Evolution and tectonic patterns of Tarim Basin[J]. Earth Science-Journal of China University of Geosciences, 1994, 19(6):742-754.
[15] 姜海健,陈强路,乔桂林,等.塔里木盆地中东部中下奥陶统颗粒滩发育特征及分布[J].岩性油气藏, 2017, 29(5):67-75. JIANG Haijian, CHEN Qianglu, Qiao Guilin, et al. Characteristics and distribution of Lower-Middle Ordovician grain bank in mid-eastern Tarim Basin[J]. Lithologic Reservoirs, 2017, 29(5):67-75.
[16] 彭军,夏梦,曹飞,等.塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J].岩性油气藏, 2022, 34(2):17-30. PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2):17-30.
[17] 王素英,张翔,田景春,等.塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J].岩性油气藏, 2021, 33(5):81-94. WANG Suying, ZHANG Xiang, TIAN Jingchun, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5):81-94.
[18] 倪新锋,陈永权,朱永进,等.塔北地区寒武纪深层白云岩构造-岩相古地理特征及勘探方向[J].岩性油气藏, 2015, 27(5):135-143. NI Xinfeng, CHEN Yongquan, ZHU Yongjin, et al. Tectoniclithofacies palaeogeography characteristics of Cambrian deep dolomite and exploration prospects in northern Tarim Basin[J]. Lithologic Reservoirs, 2015, 27(5):135-143.
[19] 安海亭,李海银,王建忠,等.塔北地区构造和演化特征及其对油气成藏的控制[J].大地构造与成矿学, 2009, 33(1):142-147. AN Haiting, LI Haiyin, WANG Jianzhong, et al. Tectonic evolution and its controlling on oil and gas accumulation in the northern Tarim Basin[J]. Geotectonica et Metallogenia, 2009, 33(1):142-147.
[20] 何登发,周新源,杨海军,等.塔里木盆地克拉通内古隆起的成因机制与构造类型[J].地学前缘, 2008, 15(2):207-221. HE Dengfa, ZHOU Xinyuan, YANG Haijun, et al. Formation mechanism and tectonic types of intracratonic paleo-uplifts in the Tarim Basin[J]. Earth Science Frontiers, 2008, 15(2):207-221.
[21] 邬光辉,邓卫,黄少英,等.塔里木盆地构造-古地理演化[J].地质科学, 2020, 55(2):305-321. WU Guanghui, DENG Wei, HUANG Shaoying, et al. Tectonicpaleogeographic evolution in the Tarim Basin[J]. Chinese Journal of Geology, 2020, 55(2):305-321.
[22] 邬光辉,陈鑫,马兵山,等.塔里木盆地晚新元古代-早古生代板块构造环境及其构造-沉积响应[J].岩石学报, 2021, 37(8):2431-2441. WU Guanghui, CHEN Xin, MA Bingshan, et al. The tectonic environments of the Late Neoproterozoic-Early Paleozoic and its tectono-sedimentary response in the Tarim Basin[J]. Acta Petrologica Sinica, 2021, 37(8):2431-2441.
[23] 能源,邬光辉,黄少英,等.再论塔里木盆地古隆起的形成期与主控因素[J].天然气工业, 2016, 36(4):27-34. NENG Yuan, WU Guanghui, HUANG Shaoying, et al. Formation stage and controlling factors of the paleo-uplifts in the Tarim Basin:A further discussion[J]. Natural Gas Industry, 2016, 36(4):27-34.
[24] HE Bizhu, JIAO Cunli, XU Zhiqin, et al. The paleotectonic and paleogeography reconstructions of the Tarim Basin and its adjacent areas (NW China) during the late Early and Middle Paleozoic[J]. Gondwana Research, 2016, 30:191-206.
[25] LIN Changsong, YANG Haijun, LIU Jingyan, et al. Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China:Significance for the evolution of paleo-uplifts and tectonic geography during deformation[J]. Journal of Asian Earth Sciences, 2012, 46:1-19.
[26] 韩剑发,苏洲,陈利新,等.塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J].石油学报, 2019, 40(11):1296-1310. HAN Jianfa, SU Zhou, CHEN Lixin, et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(11):1296-1310.
[27] 邬光辉.克拉通碳酸盐岩构造与油气:以塔里木为例[M].北京:科学出版社, 2016. WU Guanghui. The structural characteristics of carbonate rocks and their effects on hydrocarbon exploration in Craton Basin:A case study of the Tarim Basin[M]. Beijing:Science Press, 2016.
[28] 程飞.缝洞型碳酸盐岩油藏储层类型动静态识别方法:以塔里木盆地奥陶系为例[J].岩性油气藏, 2017, 29(3):76-82. CHENG Fei. Integrated dynamic and static identification method of fractured-vuggy carbonate reservoirs:A case from the Ordovician in Tarim Basin[J]. Lithologic Reservoirs, 2017, 29(3):76-82.
[29] 杨鹏飞,张丽娟,郑多明,等.塔里木盆地奥陶系碳酸盐岩大型缝洞集合体定量描述[J].岩性油气藏, 2013, 25(6):89-94. YANG Pengfei, ZHANG Lijuan, ZHENG Duoming, et al. Quantitative characterization of Ordovician carbonate fracture-cavity aggregate in Tarim Basin[J]. Lithologic Reservoirs, 2013, 25(6):89-94.
[30] 云露.顺北地区奥陶系超深断溶体油气成藏条件[J].新疆石油地质, 2021, 42(2):136-142. YUN Lu. Hydrocarbon accumulation of ultra-deep Ordovician fault-karst reservoirs in Shunbei area[J]. Xinjiang Petroleum Geology, 2021, 42(2):136-142.
[1] Guan Yunwen, Su Siyu, Pu Renhai, Wang Qichao, Yan Sujie, Zhang Zhongpei, Chen Shuo, Liang Dongge. Palaeozoic gas reservoir-forming conditions and main controlling factors in Xunyi area,southern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(6): 77-88.
[2] YI Zhenli, SHI Fang, YIN Taiju, LI Bin, LI Meng, LIU Liu, WANG Zhukun, YU Ye. Provenance transformation and sedimentary filling response of Mesozoic in Halahatang-Hade area,Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(5): 56-66.
[3] MENG Qinghao, ZHANG Changmin, ZHANG Xianghui, ZHU Rui, XIANG Jianbo. Morphology,distribution and main controlling factors of modern distributive fluvial system in Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(4): 44-56.
[4] SONG Zhihua, LI Lei, LEI Dewen, ZHANG Xin, LING Xun. Application of improved U-Net network small faults identification technology to Triassic Baijiantan Formation in Mazhong area,Mahu Sag [J]. Lithologic Reservoirs, 2024, 36(3): 40-49.
[5] CHEN Shuyang, HE Yunfeng, WANG Lixin, SHANG Haojie, YANG Xinrui, YIN Yanshu. Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(2): 124-135.
[6] ZHU Xiuxiang, ZHAO Rui, ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(5): 131-138.
[7] BU Xuqiang, WANG Laiyuan, ZHU Lianhua, HUANG Cheng, ZHU Xiuxiang. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(3): 152-160.
[8] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, ZHENG Jianfeng, ZHENG Xingping, YANG Zhao. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(2): 144-158.
[9] HAN Yunhao, JIANG Zhenxue, ZHANG Zhiyao, ZHU Guangyou. Favorable geological conditions for the formation of ultra-high petroleum columns in petroliferous basins [J]. Lithologic Reservoirs, 2023, 35(2): 125-135.
[10] HE Chunfeng, ZHANG Xiang, TIAN Jingchun, XIA Yongtao, YANG Yanru, CHEN Jie, WANG Xinyu. Sedimentary facies characteristics and sedimentary model of thin sand bodies of Lower Cretaceous Shushanhe Formation in Xinhe area, northern Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(1): 120-131.
[11] LIU Yongli, LI Guorong, HE Zhao, TIAN Jiaqi, LI Xiaoxiao. Sequence stratigraphic framework and platform margin belt distribution of Cambrian in northern Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(6): 80-91.
[12] CHEN Yuan, LIAO Faming, LYU Bo, JIA Wei, SONG Qiuqiang, WU Yan, KANG Ju, XIAN Rangzhi. Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(3): 104-116.
[13] PENG Jun, XIA Meng, CAO Fei, XIA Jingang, LI Feng. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(2): 17-30.
[14] WANG Suying, ZHANG Xiang, TIAN Jingchun, PENG Minghong, ZHENG Xiaoyu, XIA Yongtao. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area,Tarim Basin [J]. Lithologic Reservoirs, 2021, 33(5): 81-94.
[15] LI Huili, YOU Donghua, LI Jianjiao, TAN Guanghui, LIU Shilin. Characteristics of breccia reservoir of Tuylock Formation of well Beixin-1 in Markit Slope of Tarim Basin [J]. Lithologic Reservoirs, 2021, 33(2): 26-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: