Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (3): 104-116.doi: 10.12108/yxyqc.20220310

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin

CHEN Yuan1, LIAO Faming1, LYU Bo1, JIA Wei1, SONG Qiuqiang1, WU Yan1, KANG Ju1, XIAN Rangzhi2   

  1. 1. Dina Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    2. Supervision Center, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
  • Received:2021-06-28 Revised:2021-09-22 Online:2022-05-01 Published:2022-05-12

Abstract: Based on the data of core analysis,imaging logging, geophysics,reservoir geology and reservoir performance,the basic parameters of fractures of Paleogene in Dina-2 gas field of Tarim Basin were described. The joint technologies such as structural smoothing,three-dimensional boundary detecting and boundary strengthening were used to identify the multi-scale fracture distribution,and then a three-dimensional geological model of fracture distribution was established by using multi-scale fracture modeling technology. The results show that: (1)The Paleogene fractures in Dina area are mainly high angle oblique fractures and vertical fractures in near EW direction. The true opening of macro fractures is generally less than 0.460 mm,the average linear density is 0.730 pieces per meter,the filling degree is high. The true opening of micro fractures is less than 0.037 mm, the average surface density is 0.031 pieces per square meter,and the filling degree is low. Most of the fractures are shear fractures related to structural deformation and faulting.(2)The three-dimensional minimum curvature seismic attribute is sensitive to faults and fractures. The ant-tracking attribute volumes identified by boundary detecting and three-dimensional boundary strengthening technology has significantly improved the recognition degree of faults and fractures. The sedimentary reservoir and production performance characteristics can be used to predict the distribution of small-scale fractures between wells.(3)The sequential Gaussian random simulation under facies-controlled conditions was adopted for reservoir simulation. The porosity and permeability before and after simulation are basically consistent. The error between the calculated geological reserves and real reserves is small. On the whole,the geological model can objectively reflect the underground geological characteristics of gas reservoir.(4)The weights were analyzed with different attribute volumes of the four groups of fractures in the study area. The attribute volumes were fused with different weight coefficients to establish the fracture density attribute field. By optimizing the fracture modeling method,the corresponding model parameters were set for different fracture groups to complete the three-dimensional geological model of discrete fractures. Through dynamic verification,the overall error of formation coefficient is less than 5%.

Key words: dynamic optimization, fracture modeling, geological modeling, fracture characterization, Paleogene, Dina-2 gas field, Tarim Basin

CLC Number: 

  • TE122.1
[1] 周新桂,张林炎,范昆.油气盆地低渗透储层裂缝预测研究现状及进展[J].地质论评, 2006, 52(6):777-782. ZHOU Xingui, ZHANG Linyan, FAN Kun. The research situation and progresses of natural fracture for low permeability reservoirs in oil and gas basin[J]. Geological Review, 2006, 52(6):777-782.
[2] 曾联波.低渗透砂岩油气储层裂缝及其渗流特征[J].地质科学, 2004, 39(1):11-17. ZENG Lianbo. Fissure and its seepage characteristics in lowpermeable sandstone reservoir[J]. Chinese Journal of Geology, 2004, 39(1):11-17.
[3] MAIER C, GEIGER S. Combining unstructured grids, discrete fracture representation and dual-porosity models for improved simulation of naturally fractured reservoirs[J]. SPE 166049, 2013:125-130.
[4] BACA R G, ARNETT R C, LANGFORD D W. Modeling fluid flow in fractured-porous rock masses by finite-element techniques[J]. International Journal for Numerical Methods in Fluids, 1984, 4(4):337-348.
[5] 何更生,唐海.油层物理[M].北京:石油工业出版社, 2011:32-78. HE Gengsheng, TANG Hai. Reservoir physics[M]. Beijing:Petroleum Industry Press, 2011:32-78.
[6] 邓西里,李佳鸿,刘丽,等.裂缝性储集层表征及建模方法研究进展[J].高校地质学报, 2015, 21(2):306-319. DENG Xili, LI Jiahong, LIU Li, et al. Advances in the study of fractured reservoir characterization and modeling[J]. Geological Journal of China Universities, 2015, 21(2):306-319.
[7] BAECHER G B. Statistical analysis of rock mass fracturing[J]. Journal of the International Association for Mathematical Geology, 1983, 15(2):329-348.
[8] LONG J C S, REMER J S, WILSON C R, et al. Porous media equivalents for networks of discontinuous fractures[J]. Water Resources Research, 1982, 18(3):645-658.
[9] DERSHOWITZ W S, EINSTEIN H H. Characterizing rock joint geometry with joint system models[J]. Rock Mechanics and Rock Engineering, 1988, 21(1):21-51.
[10] IVANOVA V M. Three-dimensional stochastic modeling of rock fracture systems[R]. Massachusetts Institute of Technology, 2005:18-56.
[11] 许同海.致密储层裂缝识别的测井方法及研究进展[J].油气地质与采收率, 2005, 12(3):75-78. XU Tonghai. Logging method and its research progress in identification of tight reservoirs fractures[J]. Petroleum Geology and Recovery Efficiency, 2005, 12(3):75-78.
[12] 李志勇,曾佐勋,罗文强.裂缝预测主曲率法的新探索[J].石油勘探与开发, 2003, 30(6):83-85. LI Zhiyong, ZENG Zuoxun, LUO Wenqiang. A new approach for predicting fractures using principal curvature[J]. Petroleum Exploration and Development, 2003, 30(6):83-85.
[13] 赵万金,周春雷.基于Contourlet变换的图像增强技术识别裂缝[J].岩性油气藏, 2017, 29(3):103-109. ZHAO Wanjin, ZHOU Chunlei. Application of image enhancement technique to fracture identification based on Contourlet transform[J]. Lithologic Reservoirs, 2017, 29(3):103-109.
[14] 贺振华,胡光岷,黄德济.致密储层裂缝发育带的地震识别及相应策略[J].石油地球物理勘探, 2005, 40(2):190-195. HE Zhenhua, HU Guangmin, HUANG Deji. Seismic identification of fracture-developed zone of dense reservoir and relative strategy[J]. Oil Geophysical Prospecting, 2005, 40(2):190-195.
[15] 张亚春,尹太举,周文.在蚂蚁属性体约束下的裂缝建模方法研究[J].长江大学学报(自科版), 2016, 13(14):16-21. ZHANG Yachun, YIN Taiju, ZHOU Wen. The fracture modeling in the constraint of ant tracking attribute[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(14):16-21.
[16] 孙炜,李玉凤,付建伟,等.测井及地震裂缝识别研究进展[J].地球物理学进展, 2014, 29(3):1231-1242. SUN Wei, LI Yufeng, FU Jianwei, et al. Review of fracture identification with well logs and seismic data[J]. Progress in Geophysics, 2014, 29(3):1231-1242.
[17] 黄辅琼,欧阳健,肖承文.储层岩心裂缝与试件裂缝定量描述方法研究[J].测井技术, 1997, 21(5):356-360. HUANG Fuqiong, OUYANG Jian, XIAO Chengwen. A quantitative description method for cores and tested samples fractures[J]. Well Logging Technology, 1997, 21(5):356-360.
[18] 周新桂,邓宏文,操成杰,等.储层构造裂缝定量预测研究及评价方法[J].地球学报, 2003, 24(2):175-180.ZHOU Xingui, DENG Hongwen, CAO Chengjie, et al. The methods for quantitative prediction and evaluation of structural fissures in reservoirs[J]. Acta Geoscientia Sinica, 2003, 24(2):175-180.
[19] 王建君,李井亮,李林,等.基于叠后地震数据的裂缝预测与建模:以太阳-大寨地区浅层页岩气储层为例[J].岩性油气藏, 2020, 32(5):122-132. WANG Jianjun, LI Jingliang, LI Lin, et al. Fracture prediction and modeling based on poststack 3D seismic data:A case study of shallow shale gas reservoir in Taiyang-Dazhai area[J]. Lithologic Reservoirs, 2020, 32(5):122-132.
[20] 王蓓,刘向君,司马立强,等.磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J].岩性油气藏, 2019, 31(2):124-133. WANG Bei, LIU Xiangjun, SIMA Liqiang, et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application[J]. Lithologic Reservoirs, 2019, 31(2):124-133.
[21] WENG Xiaowei, KRESSE O, CHUPRAKOV D, et al. Applying complex fracture model and integrated workflow in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2014, 124:468-483.
[22] 王时林,秦启荣,苏培东.储层裂缝识别与预测[J].断块油气田, 2009, 16(5):31-33. WANG Shilin, QIN Qirong, SU Peidong. Identification and prediction of reservoir fracture[J]. Fault-Block Oil&Gas Field, 2009, 16(5):31-33.
[23] 张雨晴,王志章.致密碎屑岩裂缝性储层预测方法综述[J].科技导报, 2010, 28(14):109-112. ZHANG Yuqing, WANG Zhizhang. A review of prediction methods for reservoirs of tight fractured clastic rock[J]. Science&Technology Review, 2010, 28(14):109-112.
[24] 周文.裂缝性油气储集层评价方法[M].成都:四川科学技术出版社, 1998:39-88. ZHOU Wen. Evaluation methods of fracture reservoir in oil and gas pool[M]. Chengdu:Sichuan Science and Technology Press, 1998:39-88.
[25] 张学汝,陈和平,张吉昌,等.变质岩储集层构造裂缝研究技术[M].北京:石油工业出版社, 1999:20-21. ZHANG Xueru, CHEN Heping, ZHANG Jichang, et al. Structural fracture research technology of metamorphic reservoir[M]. Beijing:Petroleum Industry Press, 1999:20-21.
[26] DERSHOWITZ W S. A probabilistic model for the deformability of jointed rock masses[M]. Massachusetts:MIT and Cambridge, 1979:18-65.
[27] DERSHOWITZ W S, POINTE P L. FracMan user documentation[M]. Seattle:Golder Associates Inc., 1993:1-42.
[28] DERSHOWITZ W S. Fractured reservoir discrete fracture network technologies[M]. Seattle:Golder Associates Inc., 1996:1-22.
[29] EINSTEIN H H,BAECHER G B. Probabilistic and statistical methods in engineering geology[J]. Rock Mechanics and Rock Engineering, 1983, 16(1):47-61.
[30] 童亨茂,钱祥麟.储层裂缝的研究和分析方法[J].石油大学学报(自然科学版), 1994, 18(6):14-20. TONG Hengmao, QIAN Xianglin. Research and analysis on natural fracture[J]. Journal of the University of Petroleum, China (Edition of Natural Sciences), 1994, 18(6):14-20.
[31] 付晓飞,苏玉平,吕延防,等.断裂和裂缝的分形特征[J].地球科学——中国地质大学学报, 2007, 32(2):227-234. FU Xiaofei, SU Yuping, LYU Yanfang, et al. Fractural characteristic and geological meaning of fault and fracture[J]. Earth Science-Journal of China University of Geosciences, 2007, 32(2):227-234.
[32] 刘振峰,曲寿利,孙建国,等.地震裂缝预测技术研究进展[J].石油物探, 2012, 51(2):191-198. LIU Zhenfeng, QU Shouli, SUN Jianguo, et al. Progress of seismic fracture characterization technology[J]. Geophysical Prospecting for Petroleum, 2012, 51(2):191-198.
[33] 孙炜,李玉凤,付建伟,等.测井及地震裂缝识别研究进展[J].地球物理学进展, 2014, 29(3):1231-1242. SUN Wei, LI Yufeng, FU Jianwei, et al. Review of fracture identification with well logs and seismic data[J]. Progress in Geophysics, 2014, 29(3):1231-1242.
[34] DORIGO M, MANIEZZO V, COLORNI A. Ant system:optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 1996, 26(1):29-41.
[35] PEDERSEN S I, SKOV T, RANDEN T,et al. Automatic fault extraction using artificial ants[J]. SEG Technical Program Expanded Abstracts, 2002, 21:512-515.
[36] NELSON R A. Geologic analysis of naturally fractured reservoirs[M]. Huston:Gulf Publishing Company, 1985:189-231.
[37] NARR W, SUPPE J. Joint spacing in sedimentary rocks[J]. Journal of Structural Geology, 1991, 13(9):1037-1048.
[38] 曾联波.低渗透砂岩储层裂缝的形成与分布[M].北京:科学出版社, 2008:25-46. ZENG Lianbo. Formation and distribution of fractures in low permeability sandstone reservoirs[M]. Beijing:Science Press, 2008:25-46.
[39] 曾联波,漆家福,王永秀.低渗透储层构造裂缝的成因类型及其形成地质条件[J].石油学报, 2007, 28(4):52-56. ZENG Lianbo, QI Jiafu, WANG Yongxiu. Origin type of tectonic fractures and geological conditions in low-permeability reservoirs[J]. Acta Petrolei Sinica, 2007, 28(4):52-56.
[40] 袁静,曹宇,李际,等.库车坳陷迪那气田古近系裂缝发育的多样性与差异性[J].石油与天然气地质, 2017, 38(5):840-850. YUAN Jing, CAO Yu, LI Ji, et al. Diversities and disparities of fracture systems in the Paleogene in DN gas field, Kuqa Depression, Tarim Basin[J]. Oil&Gas Geology, 2017, 38(5):840-850.
[41] 孟召平,彭苏萍,傅继彤.含煤岩系岩石力学性质控制因素探讨[J].岩石力学与工程学报, 2002, 21(1):102-106. MENG Zhaoping, PENG Suping, FU Jitong. Study on control factors of rock mechanics properties of coal-bearing formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1):102-106.
[42] 曾联波,漆家福,王成刚.构造应力对裂缝形成与流体流动的影响[J].地学前缘, 2008, 15(3):292-298. ZENG Lianbo, QI Jiafu, WANG Chenggang. The influence of tectonic stress on fracture formation and fluid flow[J]. Earth Science Frontiers, 2008, 15(3):292-298.
[1] HE Yu, ZHOU Xing, LI Shaoxuan, DING Hongbo. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2022, 34(3): 60-69.
[2] CHENG Danhua, JIAO Xiarong, WANG Jianwei, ZHUANG Dongzhi, WANG Zhengjun, JIANG Shan. Shale oil reservoir characteristics and significance of the first member of Paleogene Shahejie Formation in Nanpu Sag,Huanghua Depression [J]. Lithologic Reservoirs, 2022, 34(3): 70-81.
[3] GUO Meijie, SHI Baohong, DONG Xiongying, LI Haodong, HE Chuan. Hydrocarbon accumulation conditions and main controlling factors of Paleogene in Chenghai slope,Huanghua Depression [J]. Lithologic Reservoirs, 2022, 34(3): 82-92.
[4] ZHANG Wei, LI Lei, QIU Xinwei, GONG Guangchuan, CHENG Linyan, GAO Yifan, YANG Zhipeng, YANG Lei. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(3): 131-141.
[5] PENG Jun, XIA Meng, CAO Fei, XIA Jingang, LI Feng. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(2): 17-30.
[6] CUI Jun, MAO Jianying, CHEN Dengqian, SHI Qi, LI Yanan, XIA Xiaomin. Reservoir characteristics of Paleogene lacustrine carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 45-53.
[7] ZHAO Sisi, LI Jianming, LIU Jincheng, LI Jiyong, CUI Jun. Thermochemical sulfate reduction(TSR) and reservoir reformation of the upper Paleogene Xiaganchaigou Formation in Yingxi area, Qaidam Basin [J]. Lithologic Reservoirs, 2022, 34(2): 66-74.
[8] WANG Suying, ZHANG Xiang, TIAN Jingchun, PENG Minghong, ZHENG Xiaoyu, XIA Yongtao. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area,Tarim Basin [J]. Lithologic Reservoirs, 2021, 33(5): 81-94.
[9] ZHANG Wen, LYU Shicong, ZHAO Dalin, JIA Haisong, CAI Yueqian. Sedimentary characteristics and main controlling factors of Paleogene beach bar in southwestern Bohai Bay Basin [J]. Lithologic Reservoirs, 2021, 33(3): 85-94.
[10] HUANG Hua, YUAN Juanmei, PENG Wei, ZHANG Liang, WEN Hui. Sedimentary characteristics and reservoir accumulation model of salt lake of Paleogene Qianjiang Formation in Jianghan Basin [J]. Lithologic Reservoirs, 2021, 33(2): 9-16.
[11] LI Huili, YOU Donghua, LI Jianjiao, TAN Guanghui, LIU Shilin. Characteristics of breccia reservoir of Tuylock Formation of well Beixin-1 in Markit Slope of Tarim Basin [J]. Lithologic Reservoirs, 2021, 33(2): 26-35.
[12] XIANG Qiaowei, LI Xiaoping, DING Lin, DU Jiayuan. Formation mechanism and petroleum geological significance of Paleogene sandstone with high natural gamma value in Zhuyi Depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2021, 33(2): 93-103.
[13] PANG Xiaojun, WANG Qingbin, XIE Ting, ZHAO Meng, FENG Chong. Paleogene provenance and its control on high-quality reservoir in the northern margin of Huanghekou Sag [J]. Lithologic Reservoirs, 2020, 32(2): 1-13.
[14] YU Haibo, CHENG Xiushen, QI Jiafu, TAN Yuming, XU Tianwu, ZHOU Yan. Control of fault activity on sedimentation of Paleogene in Dongpu Sag [J]. Lithologic Reservoirs, 2019, 31(5): 12-23.
[15] LIU Gongli, HAN Zijun, DUAN Xinyi, ZHEN Zongyu. Seismic response characteristics and thickness prediction of thin interbedded igneous rocks [J]. Lithologic Reservoirs, 2019, 31(3): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: