Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (5): 131-138.doi: 10.12108/yxyqc.20230513

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No. 1 fault zone,Tarim Basin

ZHU Xiuxiang1, ZHAO Rui1,2, ZHAO Teng2,3   

  1. 1. Research Institute of Exploration and Development, Northwest Oilfield Company, Sinopec, Urumqi 830011, China;
    2. Research Institute of Petroleum Exploration and Production, Sinopec, Beijing 100083, China;
    3. School of Energy, China University of Geosciences(Beijing), Beijing 100083, China
  • Received:2022-03-07 Revised:2022-06-13 Online:2023-09-01 Published:2023-09-28

Abstract: The extra-deep fault-controlled fractured-vuggy reservoirs distributed along strike-slip fault zones in Shunbei area of Tarim Basin have obvious subsection differences. Through interpretation of 3D seismic data, combined with data of drilling,logging and production test,the characteristics of the strike-slip segments of Shunbei No. 1 fault zone and the differences and causes of internal reservoir structure in different geometric segments were studied,and favorable reservoirs were selected. The results show that: (1)Shunbei No. 1 fault zone is formed by the oblique superposition of eight geometric segments,each of which forms a set of independent reservoir units. The internal fracture cave structure of a single reservoir unit is basically the same,but the internal fracture cave structure of adjacent reservoir units is obviously different,and the oil and gas reservoirs are not connected with each other.(2)The internal fracture cavity structure of the geometric segments is controlled by the activity intensity of strike-slip structure,according to which,internal and external fracture structures,double hole fracture structures,large-scale homogeneous reservoirs and other internal reservoir structure can be divided. Among them,large-scale homogeneous reservoirs develop multiple sets of fracture cavity bodies,with large size, large number and strong internal connectivity, which is conducive to oil and gas enrichment.

Key words: extra-deep layer, strike-slip fault segment, reservoir, reservoir connectivity, Shunbei No. 1 fault zone, Tarim Basin

CLC Number: 

  • TE122
[1] 赵锐,赵腾,李慧莉,等.塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J].特种油气藏, 2019, 26(5):8-13. ZHAO Rui, ZHAO Teng, LI Huili, et al. Fault-controlled fracturecavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil & Gas Reservoirs, 2019, 26(5):8-13.
[2] 胡文革.塔河碳酸盐岩缝洞型油藏开发技术及攻关方向[J].油气藏评价与开发, 2020, 10(2):1-10. HU Wenge. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe Oilfield[J]. Petroleum Reservoir Evaluation and Development, 2020, 10(2):1-10.
[3] 邓尚,李慧莉,张仲培,等.塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J].石油与天然气地质, 2018, 39(5):38-48. DENG Shang, LI Huili, ZHANG Zhongpei, et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5):38-48.
[4] 王素英,张翔,田景春,等.塔里木盆地顺北地区柯坪塔格组沉积演化及沉积分异模式[J].岩性油气藏, 2021, 33(5):81-94. WANG Suying, ZHANG Xiang, TIAN Jingchun, et al. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area, Tarim Basin[J]. Lithologic Reservoirs, 2021, 33(5):81-94.
[5] 漆立新.塔里木盆地顺北超深断溶体油藏特征与启示[J].中国石油勘探, 2020, 25(1):102-111. QI Lixin. Characteristics and inspiration of ultra-deep fault-karst reservoir in the Shunbei area of the Tarim Basin[J]. China Petroleum Exploration, 2020, 25(1):102-111.
[6] 陈袁,廖发明,吕波,等.塔里木盆地迪那2气田古近系离散裂缝表征与建模[J].岩性油气藏, 2022, 34(3):104-116. CHEN Yuan, LIAO Faming, LYU Bo, et al. Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(3):104-116.
[7] 李映涛,漆立新,张哨楠,等.塔里木盆地顺北地区中-下奥陶统断溶体储层特征及发育模式[J].石油学报, 2019, 40(12):1470-1484. LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12):1470-1484.
[8] 刘冬冬,杨东旭,张子亚,等.基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J].岩性油气藏, 2019, 31(3):76-85. LIU Dongdong, YANG Dongxu, ZHANG Ziya, et al. Fracture identification for tight reservoirs by conventional and imaging logging:A case study of Permian Lucaogou Formation in Jimsar Sag, Junggar Basin[J]. Lithologic Reservoirs, 2019, 31(3):76-85.
[9] 邓尚,李慧莉,韩俊,等.塔里木盆地顺北5号走滑断裂中段活动特征及其地质意义[J].石油与天然气地质, 2019, 40(5):990-998. DENG Shang, LI Huili, HAN Jun, et al. Characteristics of the central segment of Shunbei 5 strike-slip fault zone in Tarim Basin and its geological significance[J]. Oil & Gas Geology, 2019, 40(5):990-998.
[10] 彭军,夏梦,曹飞,等.塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J].岩性油气藏, 2022, 34(2):17-30. PENG Jun, XIA Meng, CAO Fei, et al. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin[J]. Lithologic Reservoirs, 2022, 34(2):17-30.
[11] 谷茸,云露,朱秀香,等.塔里木盆地顺北油田油气来源研究[J].石油实验地质, 2020, 42(2):248-254. GU Rong, YUN Lu, ZHU Xiuxiang, et al. Oil and gas sources in Shunbei Oilfield, Tarim Basin[J]. Petroleum Geology & Experiment, 2020, 42(2):248-254.
[12] 隋欢,张哨楠.塔里木盆地顺北一号断裂带奥陶系一间房组碳酸盐岩储层主控因素研究[C]//第十五届全国古地理学及沉积学学术会议摘要集.成都:中国矿物岩石地球化学学会岩相古地理专业委员会, 2018:246-247. SUI Huan, ZHANG Shaonan. Research on main control factors of carbonate reservoir of Ordovician Yijianfang Formation in Shunbei 1 fault zone, Tarim Basin[C]//Summary of the 15th National Conference on Paleogeography and Sedimentology. Chengdu:Professional Committee of Lithofacies and Palaeogeography, Chinese Society for Mineralogy, Petrology and Geochemistry, 2018:246-247.
[13] 苑雅轩,樊太亮,苑学军,等.塔河油田蓬莱坝组异常地震特征及地质成因分析[J].岩性油气藏, 2018, 30(6):98-108. YUAN Yaxuan, FAN Tailiang, YUAN Xuejun, et al. Characteristics and geological genesis of anomalous seismic facies of Penglaiba Formation in Tahe Oilfield[J]. Lithologic Reservoirs, 2018, 30(6):98-108.
[14] 韩杰,江杰,张敏,等.断裂及其裂缝发育带在塔中油气勘探中的意义[J].西南石油大学学报(自然科学版), 2015, 37(2):11-20. HAN Jie, JIANG Jie, ZHANG Min, et al. Significance of fault and fracture developing area in oil and gas exploration in Tazhong[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(2):11-20.
[15] 刘宝增.塔里木盆地顺北地区油气差异聚集主控因素分析:以顺北1号、顺北5号走滑断裂带为例[J].中国石油勘探, 2020, 25(3):83-95. LIU Baozeng. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area,Tarim Basin:Taking Shunbei No.1 and No.5 strike slip fault zones as examples[J]. China Petroleum Exploration, 2020, 25(3):83-95.
[16] 赵锐,赵腾,李慧莉,等.塔里木盆地顺托果勒地区中下奥陶统鹰山组与一间房组沉积相与旋回地层[J].东北石油大学学报, 2019, 43(4):1-16. ZHAO Rui, ZHAO Teng, LI Huili, et al. Sedimentary facies and cyclic stratigraphy of Yingshan and Yijianfang Formations of Lower-Middle Ordovician in Shuntuoguole area, Tarim Basin[J]. Journal of Northeast Petroleum University, 2019, 43(4):1-16.
[17] DENG Shang, LI Huili, ZHANG Zhongpei, et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin, 2019, 103(1):109-137.
[18] MITCHELL T M, FAULKNER D R. The nature and origin of off-fault damage surrounding strike-slip fault zones with a wide range of displacements:A field study from the Atacama fault system, northern Chile[J]. Journal of Structural Geology, 2009, 31:802-816.
[19] JEANNE P, GUGLIELMI Y, LAMARCHE J, et al. Architectural characteristics and petrophysical properties evolution of a strike-slip fault zone in a fractured porous carbonate reservoir[J]. Jour-nal of Structural Geology, 2012, 34:93-109.
[20] 焦方正.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J].石油与天然气地质, 2017, 38(5):831-839. JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil & Gas Geology, 2017, 38(5):831-839.
[21] GALE J, GOMEZ L. Late opening-mode fractures in karst-brecciated dolostones of the Lower Ordovician Ellenburger Group, west Texas:Recognition, characterization, and implications for fluid flow[J]. AAPG Bulletin, 2007, 91(7):1005-1023.
[22] KIM Y S, SANDERSON D J. Inferred fluid flow through fault damage zones based on the observation of stalactites in carbonate caves[J]. Journal of Structural Geology, 2010, 32:1305-1316.
[23] 黄诚.叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别:以塔里木盆地顺北地区为例[J].石油实验地质, 2019, 41(3):379-389. HUANG Cheng. Multi-stage activity characteristics of smallscale strike-slip faults in superimposed basin and its identification method:A case study of Shunbei area, Tarim Basin[J]. Petroleum Geology & Experiment, 2019, 41(3):379-389.
[24] BECK C, KHADEEVA A, SARMAH B, et al. Use of seismic attributes and open-hole log data to characterize production variability in a fractured carbonate play:A case study from Madison County, Texas[J]. Interpretation, 2019, 7(1):167-178.
[25] LI Jianwei, ZHOU Meifu, LI Xianfu, et al. Structural control on uranium mineralization in South China:Implications for fluid flow in continental strike-slip faults[J]. Science in China Series D:Earth Sciences, 2002, 45(9):851-864.
[1] ZHANG Changmin, ZHANG Xianghui, ZHU Rui, FENG Wenjie, YIN Taiju, YIN Yanshu, Adrian J. HARTLEY. Research progress and application prospect of distributive fluvial system [J]. Lithologic Reservoirs, 2023, 35(5): 11-25.
[2] DU Jiangmin, CUI Zihao, JIA Zhiwei, ZHANG Yi, NIE Wancai, LONG Pengyu, LIU Boyuan. Sedimentary characteristics of Ma 55 sub-member of Ordovician Majiagou Formation in Sulige area,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(5): 37-48.
[3] YUE Shijun, LIU Yingru, XIANG Yiwei, WANG Yulin, CHEN Fenjun, ZHENG Changlong, JING Ziyan, ZHANG Tingjing. A new method for calculating dynamic reserves and water influx of water-invaded gas reservoirs [J]. Lithologic Reservoirs, 2023, 35(5): 153-160.
[4] NIE Lishang, MA Jinghui, TANG Xiaofei, YANG Zhi, ZHANG Wanjin, LI Hongrui. Meso-Cenozoic tectonic events and their petroleum geological significance in Zhangpenggou area,eastern Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(5): 81-91.
[5] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[6] LI Shengjun, GAO Jianhu, ZHANG Fanchang, HE Dongyang, GUI Jinyong. A strong seismic energy reduction method under compressed sensing [J]. Lithologic Reservoirs, 2023, 35(4): 70-78.
[7] MAN Xiao, HU Desheng, WU Jie, GONG Liyuan, LIU Zhixuan, JIANG Yingde, ZHAO Ye. Development characteristics and accumulation model of sublacustrine fans of the first member of Eocene Liushagang Formation in Weixinan Sag,Beibuwan Basin [J]. Lithologic Reservoirs, 2023, 35(4): 137-144.
[8] QIAN Zhen, MAO Zhiqiang, ZHENG Wei, HUANG Yuanjun, CHEN Lifeng, ZENG Huiyong, LI Gang, SONG Ai. Experiment on profile control and water plugging of rubber particles in inter-well single fractured-vuggy reservoir [J]. Lithologic Reservoirs, 2023, 35(4): 161-168.
[9] YIN Yanshu, DING Wengang, AN Xiaoping, XU Zhenhua. Configuration characterization of Triassic Chang 611reservoir in Sai 160 well area of Ansai oilfield,Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(4): 37-49.
[10] HE Yanbing, XIAO Zhangbo, ZHENG Yangdi, LIU Junyi, YI Hao, ZHAO Qing, ZHANG Yuexia, HE Yong. Hydrocarbon accumulation characteristics of Mesozoic Lufeng 7-9 buried hill in Lufeng 13 subsag transition zone,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(3): 18-28.
[11] BAI Yang, ZHANG Xiaolei, GANG Wenzhe, ZHANG Zhongyi, YANG Shangru, PANG Jinlian, CAO Jingjing, HOU Yunchao. Characteristics and genesis of Upper Triassic Chang 8 reservoir with low oil saturation in northern Pingliang area, Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(3): 66-75.
[12] DU Jiangmin, LIU Boyuan, ZHANG Yi, JIA Zhiwei, FU Jiyou, LONG Pengyu, LUO Jinyang, SHENG Jun. Characteristics and accumulation model of typical dolomite reservoirs in China [J]. Lithologic Reservoirs, 2023, 35(3): 86-98.
[13] SONG Xingguo, CHEN Shi, YANG Minghui, XIE Zhou, KANG Pengfei, LI Ting, CHEN Jiuzhou, PENG Zijun. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution [J]. Lithologic Reservoirs, 2023, 35(3): 99-109.
[14] YANG Runze, ZHAO Xianzheng, LIU Haitao, LI Hongjun, ZHAO Changyi, PU Xiugang. Hydrocarbon accumulation characteristics and favorable zones prediction in and under source of Paleozoic in Huanghua Depression,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 110-125.
[15] LIU Zhongquan, ZHAO Leqiang, ZENG Zhiping, TIAN Jijun, LI Zhengqiang, LUO Jinchang, HU Meiling. Shale oil accumulation conditions of Permian Lucaogou Formation in Fukang fault zone,Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(3): 126-137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: