Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (2): 144-158.doi: 10.12108/yxyqc.20230214

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin

NI Xinfeng1,2, SHEN Anjiang1,2, QIAO Zhanfeng1,2, ZHENG Jianfeng1,2, ZHENG Xingping1,2, YANG Zhao1   

  1. 1. Hangzhou Institute of Geology, PetroChina, Hangzhou 310023, China;
    2. Key Laboratory of Carbonate Reservoir, PetroChina, Hangzhou 310023, China
  • Received:2022-09-13 Revised:2022-10-16 Published:2023-03-07

Abstract: Based on core thin section, experimental analysis, drilling, logging and seismic data, the Ordovician carbonate karst reservoirs in Tarim Basin were classified according to the reservoir genetic mechanism, and the distribution, space types and main control factors of various reservoirs were analyzed. The results show that:(1) The Ordovician fracture-vuggy karst reservoirs in Tarim Basin can be divided into five types according to their genesis:(quasi-) syngenetic karst reservoirs, interlayer karst reservoirs, bedding karst reservoirs, buried hill(weathering crust) karst reservoirs and fault-controlled karst reservoirs.(2) (Quasi-) syngenetic karst reservoirs, also known as reef-shoal karst reservoirs, are the reservoir formed by short-term(transient) exposure and leaching of reefshoal facies granular limestone at the platform edge or within the platform due to sea level drop, with matrix pores, dissolved fractures and dissolved caves being developed. They are usually superimposed with later interlayer karst or buried hill karst to form complex karst reservoirs.(3) The interlayer karst reservoirs are developed in the inner zone, and they are related to the parallel(micro-angle) unconformity surface in the carbonate strata and distributed quasi-stratified. The reservoir space is mainly cave type, followed by fracture-vuggy type and vuggy type.(4) The bedding karst reservoirs are related to the slope background, pre-existing pores and fractures around the buried hill, and the surrounding of the buried hill is distributed in a ring band, dominated by vuggy type and fracture-vuggy type, and more than 90% of the dissolved pores and caves are connected through faults and fractures.(5) The buried hill(weathering crust) karst reservoirs are developed in buried hill area. They are related to medium to long-term angle unconformity and greatly affected by faults and fractures. They are quasi-stratified and have obvious characteristics of peak and hill geomorphology. According to the lithology of the surrounding rocks, they can be divided into limestone buried hill karst reservoirs and dolomite weathering crust karst reservoirs. The limestone fracture-vuggy system is developed, the matrix pores are not developed, and the dolomite fracture-vuggy is underdeveloped, mainly consisting of dolomite intercrystalline dissolved pores and fractures.(6) Controlled by faults, karst reservoirs are mainly developed in the fault development area of inner zone. The fractures and vuggy are developed with large burial depth, large scale and long span, and they are distributed in a grid-shape along the faults, dominated by fracture-vuggy type, followed by fault-cave type. The more developed the faults and fractures are, the more developed the dissolved vuggy and caves are, and the higher and more stable the single well oil testing productivity is.(7) Karst reservoirs in the study area are largely developed in the interior area, mainly bedding karst reservoirs and karst reservoirs controlled by faults, with great exploration potential.

Key words: fracture-vuggy carbonate reservoir, karstification, buried hill zone, inner zone, fault-controlled reservoir, Yingshan Formation, Yijianfang Formation, Ordovician, Tarim Basin

CLC Number: 

  • TE122.2
[1] LOHMANN K C. Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst[M]// JAMES N P, CHOQUETTE P W. Paleokarst. New York:Springer, 1988:58-80.
[2] KERANS C. Karst-controlled reservoir heterogeneity in Ellen burger Group carbonates of west Texas[J]. AAPG Bulletin, 1988, 72(10):1160-1183.
[3] 曹彦清, 张友, 沈安江, 等. 塔里木盆地古城地区奥陶系碳酸盐岩成储与油气成藏[J]. 海相油气地质, 2020, 25(4):303-311. CAO Yanqing, ZHANG You, SHEN Anjiang, et al. Carbonate reservoir formation and hydrocarbon accumulation of Ordovician in Gucheng area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2020, 25(4):303-311.
[4] 田亮, 李佳玲, 焦保雷. 塔河油田12区奥陶系油藏溶洞充填机理及挖潜方向[J]. 岩性油气藏, 2018, 30(3):52-60. TIAN Liang, LI Jialing, JIAO Baolei. Filling mechanism and potential tapping direction of Ordovician karst reservoirs in block-12 of Tahe Oilfield[J]. Lithologic Reservoirs, 2018, 30(3):52-60.
[5] 顾家裕. 塔里木盆地轮南地区下奥陶统碳酸盐岩岩溶储层特征及形成模式[J]. 古地理学报, 1999, 1(1):54-60. GU Jiayu. Characteristics and evolutional model of karst reservoirs of Lower Ordovician carbonate rocks in Lunnan area of Tarim Basin[J]. Journal of Palaeogeography, 1999, 1(1):54-60.
[6] 耿晓洁, 林畅松, 吴斌. 古地貌对塔中地区鹰山组岩溶结构及分布的控制作用[J]. 岩性油气藏, 2018, 30(4):46-55. GENG Xiaojie, LIN Changsong, WU Bin. Controlling of paleogeomorphology to characteristics and distribution of karst structures of Yingshan Formation in Tazhong area[J]. Lithologic Reservoirs, 2018, 30(4):46-55.
[7] 孟万斌, 肖春晖, 冯明石, 等. 碳酸盐岩成岩作用及其对储层的影响:以塔中顺南地区一间房组为例[J]. 岩性油气藏, 2016, 28(5):26-33. MENG Wanbin, XIAO Chunhui, FENG Mingshi, et al. Carbonate diagenesis and its influence on reservoir:A case study from Yijianfang Formation in Shunnan area, central Tarim Basin[J]. Lithologic Reservoirs, 2016, 28(5):26-33.
[8] 赵文智, 沈安江, 胡素云, 等. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征[J]. 石油勘探与开发, 2012, 39(1):1-12. ZHAO Wenzhi, SHEN Anjiang, HU Suyun, et al. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China[J]. Petroleum Exploration and Development, 2012, 39(1):1-12.
[9] 赵文智, 沈安江, 潘文庆, 等. 碳酸盐岩岩溶储层类型研究及对勘探的指导意义:以塔里木盆地岩溶储层为例[J]. 岩石学报, 2013, 29(9):3213-3222. ZHAO Wenzhi, SHEN Anjiang, PAN Wenqing, et al. A research on carbonate karst reservoirs classification and its implication on hydrocarbon exploration:Cases studies from Tarim Basin[J]. Acta Petrologica Sinica, 2013, 29(9):3213-3222.
[10] 赵文智, 沈安江, 乔占峰, 等. 中国碳酸盐岩沉积储层理论进展与海相大油气田发现[J]. 中国石油勘探, 2022, 27(4):1-15. ZHAO Wenzhi, SHEN Anjiang, QIAO Zhanfeng, et al. Theoretical progress in carbonate reservoir and discovery of large marine oil and gas fields in China[J]. China Petroleum Exploration, 2022, 27(4):1-15.
[11] 倪新锋, 张丽娟, 沈安江, 等. 塔北地区奥陶系碳酸盐岩古岩溶类型、期次及叠合关系[J]. 中国地质, 2009, 36(6):1312-1321. NI Xinfeng, ZHANG Lijuan, SHEN Anjiang, et al. Paleo-karstification types, karstification periods and superimposition relationship of Ordovician carbonates in northern Tarim Basin[J]. Geology of China, 2009, 36(6):1312-1321.
[12] 王招明, 张丽娟, 王振宇, 等. 塔里木盆地奥陶系礁滩体特征与油气勘探[J]. 中国石油勘探, 2007, 12(6):1-7. WANG Zhaoming, ZHANG Lijuan, WANG Zhenyu, et al. Features of Ordovician reef beach and exploration activities in Tarim Basin[J]. China Petroleum Exploration, 2007, 12(6):1-7.
[13] 沈安江, 郑剑锋, 顾乔元. 塔里木盆地巴楚地区中奥陶统一间房组露头礁滩复合体储层地质建模及其对塔中地区油气勘探的启示[J]. 地质通报. 2008, 27(1):137-148. SHEN Anjiang, ZHENG Jianfeng, GU Qiaoyuan. Reservoir geological models of reef complexes in the Middle Ordovician Yijianfang Formation in the Bachu area, Tarim Basin, and its implications for hydrocarbon exploration in the Tazhong area, Xinjiang, China[J]. Geological Bulletin of China, 2008, 27(1):137-148.
[14] 倪新锋. 塔北地区奥陶系碳酸盐岩岩溶储层特征及形成机理[D]. 库尔勒:中国石油塔里木油田分公司博士后科研工作站& 中国石油勘探开发研究院博士后流动站, 2010. NI Xinfeng. Characteristics and formation mechanism of Ordovician carbonate karst reservoirs in northern Tarim Basin[D]. Korla:PetroChina Tarim Oilfield Company Postdoctoral Research Station & PetroChina Exploration and Development Research Institute Postdoctoral Station, 2020.
[15] 张宝民, 刘静江. 中国岩溶储集层分类与特征及相关的理论问题[J]. 石油勘探与开发, 2009, 36(1):12-29. ZHANG Baomin, LIU Jingjiang. Classification and characteristics of karst reservoirs in China and related theories[J]. Petroleum Exploration and Development, 2009, 36(1):12-29.
[16] 宁超众, 孙龙德, 胡素云, 等. 塔里木盆地哈拉哈塘油田奥陶系缝洞型碳酸盐岩储层岩溶类型及特征[J] 石油学报, 2021, 42(1):15-32. NING Chaozhong, SUN Longde, HU Suyun, et al. Karst types and characteristics of the Ordovician fracture-cavity type carbonate reservoirs in Halahatang oilfield, Tarim Basin[J]. Acta Petrolei Sinica, 2021, 42(1):15-32.
[17] 鲁新便, 胡文革, 汪彦, 等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3):347-355. LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3):347-355.
[18] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2):207-216. JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2):207-216.
[19] 倪新锋, 杨海军, 沈安江, 等. 塔北地区奥陶系灰岩段裂缝特征及其对岩溶储层的控制[J]. 石油学报, 2010, 31(6):933-940. NI Xinfeng, YANG Haijun, SHEN Anjiang, et al. Characteristics of Ordovician limestone fractures in the northern Tarim Basin and their controlling effects on karst reservoirs[J]. Acta Petrolei Sinica, 2010, 31(6):933-940.
[20] 田军, 王清华, 杨海军, 等. 塔里木盆地油气勘探历程与启示[J]. 新疆石油地质, 2021, 42(3):272-282. TIAN Jun, WANG Qinghua, YANG Haijun, et al. Petroleum exploration history and enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology, 2021, 42(3):272-282.
[21] 贾承造, 魏国齐. 塔里木盆地构造特征与含油气性[J]. 科学通报, 2002, 47(增刊1):1-8. JIA Chengzao, WEI Guoqi. Structural characteristics and oil/gas bearing possibility[J]. Chinese Science Bulletin, 2002, 47(Suppl 1):1-8.
[22] 郑剑, 林新, 王振宇, 等. 塔中北斜坡地区奥陶系鹰山组储层差异性分析[J]. 岩性油气藏, 2012, 24(5):89-93. ZHENG Jian, LIN Xin, WANG Zhenyu, et al. Reservoir differences of the Ordovician Yingshan Formation in the northern slope of Tazhong[J]. Lithologic Reservoirs, 2012, 24(5):89-93.
[23] 倪新锋, 王招明, 杨海军, 等. 塔北地区奥陶系碳酸盐岩储层岩溶作用[J]. 油气地质与采收率, 2010, 17(5):11-16. NI Xinfeng, WANG Zhaoming, YANG Haijun, et al. Formation mechanism of Ordovician carbonate karst reservoir in the northern Tarim Basin[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(5):11-16.
[24] 孙枢, 赵文智, 张宝民, 等. 塔里木盆地轮东1井奥陶系洞穴沉积物的发现与意义[J]. 中国科学:地球科学, 2013, 43(3):414-422. SUN Shu, ZHAO Wenzhi, ZHANG Baomin, et al. Observation and implication of the paleo-cave sediments in Ordovician strata of well Lundong-1 in Tarin Basin[J]. Science China:Earth Sciences, 2013, 43(3):414-422.
[25] 沈安江, 王招明, 郑兴平, 等. 塔里木盆地牙哈-英买力地区寒武-奥陶系碳酸盐岩储层成因类型、特征及油气勘探潜力[J]. 海相油气地质, 2007, 12(2):23-32. SHEN Anjiang, WANG Zhaoming, ZHENG Xingping, et al. Genesis classification and characteristics of Cambrian-Ordovician carbonate reservoirs and petroleum exploration potential in Yaka-Yengimahalla area, Tarim Basin[J]. Marine Origin Petroleum Geology, 2007, 12(2):23-32.
[26] 常少英, 庄锡进, 邓兴梁, 等. 断溶体油藏髙效井预测方法与应用效果:以HLHT油田奥陶系潜山区为例[J]. 石油地球物理勘探, 2017, 52(增刊1):199-206. CHANG Shaoying, ZHUANG Xijin, DENG Xingliang, et al. Fault-karst carbonate reservoir prediction:A case study in Ordovician buried hills, HLHT Oilfield[J]. Oil Geophysical Prospecting, 2017, 52(Suppl 1):199-206.
[27] 邓兴梁, 乔占峰, 王彭, 等. 埋藏期"断溶体" 的储集特征、成因及发育规律:以塔中十号带奥陶系良里塔格组岩溶储层为例[J]. 海相油气地质, 2018, 23(1):47-55. DENG Xingliang, QIAO Zhanfeng, WANG Peng, et al. Origin, development and features of the "fault-dissolved body" reservoir formed in burial stage:A case study of Upper Ordovician Lianglitage Formation in Tarim Basin, northwest China[J]. Marine Origin Petroleum Geology, 2018, 23(1):47-55.
[28] 鲁新便, 杨敏, 汪彦, 等. 塔里木盆地北部"层控" 与"断控" 型油藏特征:以塔河油田奥陶系油藏为例[J]. 石油实验地质, 2018, 40(4):461-469. LU Xinbian, YANG Min, WANG Yan, et al. Geological characteristics of "strata-bound" and "fault-controlled" reservoirs in the northern Tarim Basin:Taking the Ordovician reservoirs in the Tahe Oilfield as an example[J]. Petroleum Geology & Experiment, 2018, 40(4):461-469.
[29] 乔占峰, 沈安江, 邹伟宏, 等. 断裂控制的非暴露型大气水岩溶作用模式:以塔北英买2构造奥陶系碳酸盐岩储层为例[J]. 地质学报, 2011, 85(12):2070-2083. QIAO Zhanfeng, SHEN Anjing, ZOU Weihong, et al. A faultcontrolled non-exposed meteoric karstification:A case study of Ordovician carbonate reservoir at structure YM2 in northern Tarim Basin, northwestern China[J]. Acta Geologica Sinica, 2011, 85(12):2070-2083.
[1] HE Chunfeng, ZHANG Xiang, TIAN Jingchun, XIA Yongtao, YANG Yanru, CHEN Jie, WANG Xinyu. Sedimentary facies characteristics and sedimentary model of thin sand bodies of Lower Cretaceous Shushanhe Formation in Xinhe area, northern Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(1): 120-131.
[2] LI Ling, ZHANG Zhaokun, LI Minglong, NI Jia, GENG Chao, TANG Sizhe, YANG Wenjie, TAN Xiucheng. Sequence stratigraphic characteristics and favorable reservoirs distribution of Permian Qixia Stage in Weiyuan-Gaoshiti area, Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(6): 32-46.
[3] LIU Yongli, LI Guorong, HE Zhao, TIAN Jiaqi, LI Xiaoxiao. Sequence stratigraphic framework and platform margin belt distribution of Cambrian in northern Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(6): 80-91.
[4] CHEN Zhonghong, CHAI Zhi. Difference of maturity parameters of mixed crude oil and its geological significance:A case study of Ordovician in Tuofutai area,Tabei uplift [J]. Lithologic Reservoirs, 2022, 34(5): 38-49.
[5] ZHANG Fengqi, LI Yinong, LUO Julan, REN Xiaofeng, ZHANG Lanxin, ZHANG Jieyu. Microscopic pore structure characteristics of shale of Ordovician Wulalike Formation in western Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(5): 50-62.
[6] SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield [J]. Lithologic Reservoirs, 2022, 34(4): 150-158.
[7] CHEN Yuan, LIAO Faming, LYU Bo, JIA Wei, SONG Qiuqiang, WU Yan, KANG Ju, XIAN Rangzhi. Discrete fracture characterization and modeling of Paleogene in Dina-2 gas field, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(3): 104-116.
[8] QIU Chen, YAN Jianping, ZHONG Guanghai, LI Zhipeng, FAN Cunhui, ZHANG Yue, HU Qinhong, HUANG Yi. Sedimentary microfacies division and logging identification of Ordovician Wufeng-Silurian Longmaxi shale in Luzhou area,Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(3): 117-130.
[9] PENG Jun, XIA Meng, CAO Fei, XIA Jingang, LI Feng. Sedimentary characteristics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area, Tarim Basin [J]. Lithologic Reservoirs, 2022, 34(2): 17-30.
[10] LUO Zhenfeng, SU Zhongtang, LIAO Huihong, HUANG Wenming, MA Hui, SHE Wei. Characteristics and geological significance of stromatolite dolomite of Ma 55 submember of Ordovician Majiagou Formation in Mizhi area, central-eastern Ordos Basin [J]. Lithologic Reservoirs, 2022, 34(2): 86-94.
[11] ZHANG Menglin, LI Guoqin, HE Jia, HENG De. Main controlling factors of Ordovician Wufeng-Silurian Longmaxi shale gas enrichment in Tiangongtang structure, southwestern margin of Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(2): 141-151.
[12] ZHANG Bing, TAN G Shuheng, XI Zhaodong, LIN Donglin, YE Yapei. Biostratigraphic characteristics and exploration significance of Wufeng-Longmaxi Formation in northwestern Hunan [J]. Lithologic Reservoirs, 2021, 33(5): 11-21.
[13] WANG Suying, ZHANG Xiang, TIAN Jingchun, PENG Minghong, ZHENG Xiaoyu, XIA Yongtao. Sedimentary evolution and sedimentary differentiation model of Kepingtage Formation in Shunbei area,Tarim Basin [J]. Lithologic Reservoirs, 2021, 33(5): 81-94.
[14] YE Tao, WANG Qingbin, DAI Liming, CHEN Rongtao, CUI Puyuan. New method for sequence division of platform facies carbonate rocks: A case study of Ordovician in Bozhong Sag [J]. Lithologic Reservoirs, 2021, 33(3): 95-103.
[15] LI Huili, YOU Donghua, LI Jianjiao, TAN Guanghui, LIU Shilin. Characteristics of breccia reservoir of Tuylock Formation of well Beixin-1 in Markit Slope of Tarim Basin [J]. Lithologic Reservoirs, 2021, 33(2): 26-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: