Lithologic Reservoirs ›› 2024, Vol. 36 ›› Issue (2): 113-123.doi: 10.12108/yxyqc.20240211

• PETROLEUM EXPLORATION • Previous Articles    

Connectivity of fracture networks of Carboniferous carbonate reservoirs in North Truva Oilfield,eastern margin of Precaspian Basin

LI Changhai1, ZHAO Lun2, LIU Bo3, ZHAO Wenqi2, WANG Shuqin2, LI Jianxin2, ZHENG Tianyu2, LI Weiqiang4   

  1. 1. Sinopec International Petroleum Exploration and Production Corporation, Beijing 100029, China;
    2. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    3. School of Earth and Space Sciences, Peking University, Beijing 100871, China;
    4. PetroChina Hangzhou Research Institute of Geology, Hangzhou 310023, China
  • Received:2022-10-11 Revised:2022-11-14 Published:2024-03-06

Abstract: Based on the data of core,imaging logging,and fracture network modeling,topology theory was applied to evaluate the connectivity of fracture networks of Carboniferous carbonate reservoirs in North Truva Oilfield,the eastern margin of Precaspian Basin,and its impacts on oilfield development were analyzed. The results show that:(1)The types of fracture cutting of Carboniferous carbonate reservoirs in North Truva Oilfield of eastern margin of Precaspian Basin can be divided into high-high cutting,high-low cutting,and low-low cutting. The fracture cutting in the sublayers A2,A3,G1,G2,G3,and G4 is relatively developed and mainly distributed in the high structural parts.(2)The connectivity of fracture networks can be quantitatively evaluated through four parameters:the proportion of connected area,fracture fracture volume density,average length of fractures,and average number of nodes. The connected area,fracture volume density,and fracture type can be used to qualitatively analyze and name the fracture connected units. The sublayer A2 in the study area mainly develops low-low large connected units,high-medium large connected units,and high-high large connected units. (3)The coupling effect of fracture network connectivity and reservoir properties is the origin of oilfield water channeling,and fracture network connectivity is mainly related to fracture length and fracture volume density.

Key words: carbonate, fractures length, fracture volume density, connectivity, water channeling phenomenon, Carboniferous, North Truva Oilfiled, eastern margin of Precaspian Basin

CLC Number: 

  • TE122.2
[1] ADEQ Q M,YUSOFF W I B W. Porosity and permeability analysis from well logs and core in fracture,vugy and intercrystalline carbonate reservoirs[J]. Journal of Aquaculture Research & Development,2015,6(10):1-5.
[2] BAGRINTSEVA K I. Carbonate reservoir rocks[M]. New Jersey:John Wiley & Sons,2015:1-10.
[3] 熊加贝,何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J].岩性油气藏,2022,34(1):187-200. XIONG Jiabei,HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphic-lithologic oil and gas fields[J]. Lithologic Reservoirs,2022,34(1):187-200.
[4] 孙金声,白英睿,程荣超,等. 裂缝性恶性井漏地层堵漏技术研究进展与展望[J].石油勘探与开发,2021,48(3):630-638. SUN Jinsheng,BAI Yingrui,CHENG Rongchao,et al. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation[J]. Petroleum Exploration and Development,2021,48(3):630-638.
[5] 穆龙新. 储层裂缝预测研究[M]. 北京:石油工业出版社, 2009:1-347.MU Longxin. Study on reservoir fracture prediction[M]. Beijing:Petroleum Industry Press,2009:1-347.
[6] NELSON R. Geologic analysis of naturally fractured reservoirs[M]. New York:Elsevier,1985:1-330.
[7] 陈袁,廖发明,吕波,等. 塔里木盆地迪那2气田多信息分级次离散裂缝表征及建模[J].岩性油气藏,2022,34(4):1-13. CHEN Yuan,LIAO Faming,LYU Bo,et al. Discrete fracture characterization and multi-scale modeling with different information in Dina-2 gas field,Tarim Basin[J]. Lithologic Reservoirs,2022,34(4):1-13.
[8] 邬光辉,岳国林,师骏,等. 塔中奥陶系碳酸盐岩裂缝连通性分析及其意义[J].中国西部油气地质,2006,2(2):156-159. WU Guanghui,YUE Guolin,SHI Jun,et al. Analysis of connectivity of fractures of Ordovician carbonates and its implication in central Tarim Basin[J]. West China Petroleum Geosciences,2006,2(2):156-159.
[9] 李玮,孙文峰,唐鹏,等. 基于拓扑结构的岩石裂缝网络表征方法[J]. 天然气工业,2017,37(6):22-27. LI Wei,SUN Wenfeng,TANG Peng,et al. A method for rock fracture network characterization based on topological structure[J]. Natural Gas Industry,2017,37(6):22-27.
[10] GHOSH K,MITRA S. Two-dimensional simulation of controls of fracture parameters on fracture connectivity[J]. AAPG Bulletin,2009,93(11):1517-1533.
[11] SÆVIK P N,NIXON C W. Inclusion of topological measurements into analytic estimates of effective permeability in fractured media[J]. Water Resources Research,2017,53(11):9424-9443.
[12] SANDERSON D J,NIXON C W. Topology,connectivity and percolation in fracture networks[J]. Journal of Structural Geology,2018,115:167-177.
[13] 李长海,赵伦,李建新,等. 滨里海盆地东缘构造缝形成期次及低角度构造缝成因[J]. 特种油气藏,2019,26(3):56-61. LI Changhai,ZHAO Lun,LI Jianxin,et al. Structural fracture formation stages in the eastern margin of the Caspian Basin and genesis of low-angle structural fracture[J]. Special Oil & Gas Reservoirs,2019,26(3):56-61.
[14] 张荻萩,王淑琴,赵文琪,等. 控制碳酸盐岩油藏单井产能的主要地质因素分析:以哈萨克斯坦北特鲁瓦油田KT-I油层组为例[J].岩石学报,2016,32(3):903-914. ZHANG Diqiu,WANG Shuqin,ZHAO Wenqi,et al. The main geological control factors of single well productivity for carbonate reservoir:Take the reservoir formation KT-Ⅰ in North Truva field,Kazakhstan as example[J]. Acta Petrologica Sinica, 2016,32(3):903-914.
[15] 李伟强,穆龙新,赵伦,等. 滨里海盆地东缘石炭系碳酸盐岩储集层孔喉结构特征及对孔渗关系的影响[J]. 石油勘探与开发,2020,47(5):958-971. LI Weiqiang,MU Longxin,ZHAO Lun,et al. Pore-throat structure characteristics and their impact on the porosity and permeability relationship of Carboniferous carbonate reservoirs in eastern edge of Pre-Caspian Basin[J]. Petroleum Exploration and Development,2020,47(5):958-971.
[16] ZHAO Lun,WANG Shuqin,ZHAO Wenqi,et al. Combination and distribution of reservoir space in complex carbonate rocks[J]. Petroleum Science,2016,13(3):450-462.
[17] 吕文雅,曾联波,张俊辉,等. 川中地区中下侏罗统致密油储层裂缝发育特征[J]. 地球科学与环境学报,2016,38(2):226-234. LYU Wenya,ZENG Lianbo,ZHANG Junhui,et al. Development characteristics of fractures in the Middle-Lower Jurassic tight oil reservoirs in central Sichuan Basin[J]. Journal of Earth Sciences and Environment,2016,38(2):226-234.
[18] 李长海,赵伦,刘波,等. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学,2020,31(3):402-416. LI Changhai,ZHAO Lun,LIU Bo,et al. Research status,significance and development trend of microfrctures[J]. Natural Gas Geosciece,2020,31(3):402-416.
[19] DERSHOWITZ W S,EINSTEIN H H. Characterizing rock joint geometry with joint system models[J]. Rock mechanics and rock engineering,1988,21(1):21-51.
[20] 周文,尹太举,张亚春,等. 蚂蚁追踪技术在裂缝预测中的应用:以青西油田下沟组为例[J]. 岩性油气藏,2015,27(6):111-118. ZHOU Wen,YIN Taiju,ZHANG Yachun,et al. Application of ant tracking technology to fracture prediction:A case study from Xiagou Formation in Qingxi Oilfield[J]. Lithologic Reservoirs,2015,27(6):111-118.
[21] 王蓓,刘向君,司马立强,等. 磨溪龙王庙组碳酸盐岩储层多尺度离散裂缝建模技术及其应用[J]. 岩性油气藏,2019,31(2):124-133. WANG Bei,LIU Xiangjun,SIMA Liqiang,et al. Multi-scale discrete fracture modeling technology for carbonate reservoir of Longwangmiao Formation in Moxi area and its application[J]. Lithologic Reservoirs,2019,31(2):124-133.
[22] LI Changhai,ZHAO Lun,LIN Bo,et al. Origin,distribution and implications on production of bedding-parallel fractures:A case study from the Carboniferous KT-Ⅰ Formation in the NT oilfield,Precaspian Basin,Kazakhstan[J]. Journal of Petroleum Science and Engineering,2021,196:107655.
[23] 肖阳,刘国平,韩春元,等. 冀中坳陷深层碳酸盐岩储层天然裂缝发育特征与主控因素[J]. 天然气工业,2018,38(11):33-42. XIAO Yang,LIU Guoping,HAN Chunyuan,et al. Development characteristics and main controlling factors of natural fractures in deep carbonate reservoirs in the Jizhong Depression[J]. Natural Gas Industry,2018,38(11):33-42.
[1] YANG Bowei, SHI Wanzhong, ZHANG Xiaoming, XU Xiaofeng, LIU Yuzuo, BAI Luheng, YANG Yang, CHEN Xianglin. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou [J]. Lithologic Reservoirs, 2024, 36(1): 45-58.
[2] SUN Hanxiao, XING Fengcun, XIE Wuren, QIAN Hongshan. Lithofacies paleogeography evolution of Late Ordovician in Sichuan Basin and its surrounding areas [J]. Lithologic Reservoirs, 2024, 36(1): 121-135.
[3] LUO Beiwei, YIN Jiquan, HU Guangcheng, CHEN Hua, KANG Jingcheng, XIAO Meng, ZHU Qiuying, DUAN Haigang. Characteristics and controlling factors of high porosity and permeability limestone reservoirs of Cretaceous Cenomanian in the western United Arab Emirates [J]. Lithologic Reservoirs, 2023, 35(6): 63-71.
[4] WANG Xueke, WANG Zhen, JI Zhifeng, YIN Wei, JIANG Ren, HOU Yu, ZHANG Yiqiong. Hydrocarbon accumulation rules and exploration technologies of Carboniferous subsalt carbonate reservoirs in the eastern margin of Pre-Caspian Basin [J]. Lithologic Reservoirs, 2023, 35(6): 54-62.
[5] FAN Rui, LIU Hui, YANG Peiguang, SUN Xing, MA Hui, HAO Fei, ZHANG Shanshan. Identification of carbonate dissolution valleys filled with mudstones of Cretaceous in block A,Oman Basin [J]. Lithologic Reservoirs, 2023, 35(6): 72-81.
[6] LIU Yaming, WANG Dandan, TIAN Zuoji, ZHANG Zhiwei, WANG Tongkui, WANG Chaofeng, YANG Xiaofa, ZHOU Yubing. Characteristics and prediction methods of igneous rocks in complex carbonate oilfields in Santos Basin,Brazil [J]. Lithologic Reservoirs, 2023, 35(6): 127-137.
[7] TANG Yuzhe, CHAI Hui, WANG Hongjun, ZHANG Liangjie, CHEN Pengyu, ZHANG Wenqi, JIANG Lingzhi, PAN Xingming. Characteristics and new prediction methods of Jurassic subsalt carbonate reservoirs in the eastern right bank of Amu Darya,Central Asia [J]. Lithologic Reservoirs, 2023, 35(6): 147-158.
[8] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[9] WEI Jiayi, WANG Hongwei, LIU Gang, LI Han, CAO Qian. Sedimentary characteristics of Carboniferous Yanghugou Formation in thrust belt on the western margin of Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(5): 120-130.
[10] ZHU Xiuxiang, ZHAO Rui, ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(5): 131-138.
[11] WU Xiaoning, DENG Yong, LIN Yu, ZHONG Houcai, KANG Xiaoning, WANG Yuting, QU Lin. Prediction of favorable lithofacies and exploration direction of Carboniferous in Fudong slope,Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(4): 125-136.
[12] JIANG Mengya, WANG Jiangtao, LIU Longsong, LI Hui, CHEN Hailong, JIANG Zhongfa, WANG Xueyong, LIU Hailei. Characteristics and main controlling factors of natural gas of CarboniferousPermian in western well Pen-1 sag,Junggar Basin [J]. Lithologic Reservoirs, 2023, 35(3): 138-151.
[13] WANG Jiangong, LI Jiangtao, LI Xiang, GAO Yanfang, ZHANG Ping, SUN Xiujian, BAI Yadong, ZUO Mingtao. Differences and controlling factors of lithofacies assemblages of Cenozoic lacustrine microbial carbonate rocks in western Qaidam Basin [J]. Lithologic Reservoirs, 2023, 35(3): 1-17.
[14] SONG Xingguo, CHEN Shi, YANG Minghui, XIE Zhou, KANG Pengfei, LI Ting, CHEN Jiuzhou, PENG Zijun. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution [J]. Lithologic Reservoirs, 2023, 35(3): 99-109.
[15] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, ZHENG Jianfeng, ZHENG Xingping, YANG Zhao. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(2): 144-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: