Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (2): 129-133.doi: 10.12108/yxyqc.20200214

Previous Articles     Next Articles

Experiment of minimum miscible pressure of CO2 flooding in ultra-low permeability reservoir

DAI Bo, WANG Leifei, ZHUANG Jian, YUAN Weibin, WANG Xuesheng   

  1. No.1 Oil Production Plant, PetroChina Changqing Oilfeild Company, Yan'an 71600, Shaanxi, China
  • Received:2019-03-20 Revised:2019-09-02 Online:2020-03-21 Published:2020-01-19

Abstract: When measuring the minimum miscibility pressure (MMP) of CO2-crude in ultra-low permeability reservoirs,the conventional method has the problems of long measurement period and large workload,and the miscible state of CO2 and crude oil cannot be directly observed. To determine the MMP of CO2-crude oil in Xinghe ultra-low permeability reservoir quickly and accurately,the interfacial tension(IFT) method was used to conduct indoor experiments on CO2 and crude oil in Xinghe reservoir. The results show that with the increase of equilibrium pressure,the amount of CO2 dissolved in crude oil increases,and the IFT between CO2 and crude oil can be divided into two stages,and both decrease linearly. When the equilibrium pressure increases from 4 MPa to 28 MPa,the IFT between CO2 and crude oil decreases from 17.72 mN/m to 1.56 mN/m. The MMP of Xinghe reservoir measured by IFT method is 22.5 MPa,which is slightly higher than that of 22.3 MPa measured by thin tube experiment. The difference between the two values is only 0.9%,indicating that the IFT method has good accuracy in measuring the MMP of ultra-low permeability reservoir. Through the above research,the MMP of Xinghe reservoir was determined,which provides theoretical support for the development of the CO2 stimulation production plan for the Xin he reservoir. However,since the MMP is higher than the current reservoir pressure of 17.5 MPa, CO2 and crude oil can't achieve miscibility under current reservoir conditions.

Key words: ultra-low permeability reservoir, minimum miscibility pressure, interfacial tension, Xinghe reservoir

CLC Number: 

  • ET357.45
[1] 王欣, 赵法军, 刘江.低渗透油藏CO2驱最小混相压力实验研究.内蒙古石油化工, 2012, 38(12):11-13. WANG X, ZHAO F J, LIU J. The experimental study on minimum miscibility pressure of CO2 flooding in low permeability Reservoirs. Inner Mongolia Petrochemical Industry, 2012, 38(12):11-13.
[2] 孙丽丽, 李治平, 窦宏恩, 等.超低渗油藏CO2吞吐室内评价及参数优化.油田化学, 2018, 35(2):268-272. SUN L L, LI Z P, DOU H E, et al. Laboratory evaluation and parameter optimization of CO2 huff-n-puff in ultra-low permeability reservoirs. Oilfield Chemistry, 2018, 35(2):268-272.
[3] 郭茂雷, 黄春霞, 董小刚, 等. 延长油田超低渗透砂岩油藏CO2驱油机理研究.石油与天然气化工, 2018, 47(2):75-79. GUO M L, HUANG C X, DONG X G, et al. CO2 EOR mechanism of tight oil sandstone reservoir in Yanchang Oilfield. Chemical Engineering of Oil & Gas, 2018, 47(2):75-79.
[4] 赵凤兰, 张蒙, 侯吉瑞, 等.低渗透油藏CO2混相条件及近混相驱区域确定.油田化学, 2018, 35(2):273-277. ZHAO F L, ZHANG M, HOU J R, et al. Determination of CO2 miscible condition and near-miscible region flooding in low permeability reservoir. Oilfield Chemistry, 2018, 35(2):273-277.
[5] 商琳琳.龙虎泡油田高台子超低渗透油层CO2驱实验研究. 石油地质与工程, 2018, 32(5):60-62. SHANG L L. Experimental study on CO2 flooding in gaotaizi tight reservoir in longhubao oilfield. Petroleum Geology and Engineering, 2018, 32(5):60-62.
[6] 郑永旺.苏北低渗油藏CO2驱最小混相压力计算方法研究. 石油地质与工程, 2017, 31(2):101-104. ZHENG Y W. Study on the calculation method of CO2 flooding minimum miscible pressure in northern Jiangsu low permeability reservoir. Petroleum Geology and Engineering, 2017, 31(2):101-104.
[7] 李孟涛, 张英芝, 单文文, 等.大庆榆树林油田最小混相压力的确定.西南石油学院学报, 2006, 28(4):36-39. LI M T, ZHANG Y Z, SHAN W W, et al.Determination of minimum miscibility pressure in Yushulin oil field. Journal of Southwest Petroleum Institute, 2006, 28(4):36-39.
[8] 郝永卯, 薄启炜, 陈月明.CO2驱油实验研究.石油勘探与开发, 2005, 32(2):110-112. HAO Y M, BO Q W, CHEN Y M. Laboratory investigation of CO2 flooding. Petroleum Exploration and Development, 2005, 32(2):110-112.
[9] 许瀚元, 熊钰.细管实验法确定最小混相压力的方法.内江科技, 2012, 33(6):92-93. XU H Y, XIONG Y. Thin tube test method to determine the minimum miscibility pressure. Neijiang Science and Technology, 2012, 33(6):92-93.
[10] 肖啸, 宋昭峥.高含水期二氧化碳驱油室内探索.应用化工, 2013, 42(6):974-976. XIAO X, SONG Z Z. Indoor CO2 flooding explorations at the high water-cut stag. Applied Chemical Industry, 2013, 42(6):974-976.
[11] 汤勇, 赵雪梅, 汪洋.CO2驱最小混相压力影响因素研究.油气藏评价与开发, 2018, 8(4):42-45. TANG Y, ZHAO X M, WANG Y. Analysis of influence factor of minimum miscible pressure of CO2 flooding. Reservoir Evaluation and Development, 2018, 8(4):42-45.
[12] 滕加丰.CO2-原油最小混相压力实验研究.价值工程, 2010, 29(3):31-32. TENG J F. Experiment research on CO2 minimum miscible pressure in crude oil. Value Engineering, 2010, 29(3):31-32.
[13] 黄春霞, 汤瑞佳, 余华贵, 等.高压悬滴法测定CO2-原油最小混相压力. 性油气藏, 2015, 27(1):127-130. HUANG C X, TANG R J, YU H G, et al. Determination of the minimum miscibility pressure of CO2 and crude oil system by hanging drop method. Lithologic Reservoirs, 2015, 27(1):127-130.
[14] NOVOSAD Z, SIBBALD L R, COSTAIN T G. Design of miscible solvents f or a rich gas drive-comparison of slim tube tests with rising bubble tests. Journal of Canada Petroleum Technology, 1990,29(1):37-42.
[15] 王香增, 高瑞民, 江绍静, 等.最小混相压力修正方法研究.石油化工高等学校学报, 2017, 30(1):42-44. WANG X Z, GAO R M, JIANG S J, et al. Modified method for minimum miscible pressure prediction. Journal of Petrochemical Universities, 2017, 30(1):42-44.
[16] 叶安平, 郭平, 王绍平, 等. 利用PR状态方程确定CO2驱最小混相压力.岩性油气藏, 2012, 24(6):125-128. YE A P, GUO P, WANG S P, et al. Determination of minimum miscibility pressure for CO2 flooding by using PR equation of state. Lithologic Reservoirs, 2012, 24(6):125-128.
[17] 杨永超, 姚振杰.延长油田CO2驱相态初探.石油化工高等学校学报, 2017, 30(1):42-44. YANG Y C, YAO Z J. Preliminary exploration of CO2 flooding phase of Yangchang Oilfield. Journal of Petrochemical Universities, 2017, 30(1):42-44.
[18] 彭宝仔, 罗虎, 陈光进, 等.用界面张力法测定CO2与原油的最小混相压力. 石油学报, 2007, 28(3):93-95. PENG B Z, LUO H, CHEN G J, et al. Determination of the minimum miscibility pressure of CO2 and crude oil system by vanishing interfacial tension method. Acta Petrolei Sinca, 2007, 28(3):93-95.
[19] 李虎, 蒲春生, 吴飞鹏.基于广义回归神经网络的CO2驱最小混相压力预测.岩性油气藏, 2012, 24(1):108-111. LI H, PU C S, WU F P. Prediction of minimum miscibility pressure in CO2 flooding based on general regression neural network. Lithologic Reservoirs, 2012, 24(1):108-111.
[20] SIBBALD L R, NOVOSAD Z, COSTAIN T G. Methodology for the specification of solvent blends for miscible enriched-gas drives. SPE 20205, 1991:373-378.
[21] 油气田开发专业标准化委员会.SY/T5542-2000地层原油物性分析方法.北京:石油工业出版社, 2001. Oil and Gas Field Development Professional Standardization Committee. SY/T5542-2000 Analytical method for reservoir crude oil physical properties. Beijing:Petroleum Industry Press, 2001.
[22] 国家能源局.SY/T 6573-2016最低混相压力实验测定方法-细管法.北京:石油工业出版社, 2016. National Energy Administration. SY/T6573-2016 Measurement method for MMP-slim tube method. Beijing:Petroleum Industry Press, 2016.
[1] XIAO Boya. Characteristics and favorable zone distribution of tuff reservoirt of Cretaceous in A’nan sag,Erlian Basin [J]. Lithologic Reservoirs, 2024, 36(6): 135-148.
[2] ZHANG Yichao, CHEN Minfeng, QU Dan, MAO Meifen, YANG Ziyou. Prediction method of well pattern infilling effect for ultra-low permeability reservoir in X oilfield [J]. Lithologic Reservoirs, 2020, 32(1): 144-151.
[3] YIN Daiyin, XIANG Junhui, WANG Dongqi. Classification of Fuyang oil reservoir with ultra-low permeability around placanticline of Daqing Oilfield [J]. Lithologic Reservoirs, 2018, 30(1): 150-154.
[4] ZHOU You, LI Zhiping, JING Cheng, GU Xiaoyu, SUN Wei, LI Xiao. Quantitative evaluation of favorable reservoir in ultra-low permeable reservoir based on“petrophysical facies-flow unit”log response: a case study of Chang 6 oil reservoir set in Yanchang Oilfield [J]. Lithologic Reservoirs, 2017, 29(1): 116-123.
[5] HUANG Chunxia,TANG Ruijia,YU Huagui,JIANG Shaojing. Determination of the minimum miscibility pressure of CO 2 and crude oil system by hanging drop method [J]. LITHOLOGIC RESERVOIRS, 2015, 27(1): 127-130.
[6] HU Zuowei, LI Yun, WANG Haihong, HOU Changbing, WANG Changyong, LIU Jiang. Pore structure characteristics of ultra-low permeability reservoirs of Chang 8 oil reservoir set in Zhenyuan area, Ordos Basin [J]. Lithologic Reservoirs, 2014, 26(2): 15-20.
[7] XUE Jianqiang,QIN Xiaoping,LAI Nanjun,YE Zhongbin,LI Han. Research and application of depressurization and stimulation of injection well for ultra-low permeability oilfield [J]. Lithologic Reservoirs, 2013, 25(6): 107-111.
[8] DONG Fengling,ZHOU Huadong,LI Zhixuan,CHEN Yingying,BI Yushuai,WANG Lei. Study on the potential tapping and adjusting of ultra-low permeability reservoir in Wei 42 block [J]. Lithologic Reservoirs, 2013, 25(5): 113-116.
[9] XU Haofei, MA Hongwei2 YIN Xiangrong, ZHAO Xubin, LIU Xuegong, LAI Nanjun. Study on formation damage with water flooding for ultra-low permeability reservoir in Xinjiang Oilfield [J]. Lithologic Reservoirs, 2013, 25(2): 100-106.
[10] LI Hu, PU Chunsheng, WU Feipeng. Prediction of minimum miscibility pressure in CO2 flooding based on general regression neural network [J]. Lithologic Reservoirs, 2012, 24(1): 108-111.
[11] NIE Haifeng, DONG Liquan, DONG Wei, XIE Shuang, TAN Bei. Development plan adjustment and optimization of Chang 4+5 reservoir in Geng 43 well field in Puziwan area [J]. Lithologic Reservoirs, 2011, 23(3): 129-132.
[12] LI Shanpeng,WU Kai,FANG Yanbing. Study on the starting pressure phenomenon in ultra-low permeability reservoir: An example from Houshi area [J]. Lithologic Reservoirs, 2009, 21(1): 125-127.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: