Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (1): 25-36.doi: 10.12108/yxyqc.20210103

• FORUM AND REVIEW • Previous Articles     Next Articles

New progress in study of play and trap evaluation technology for lithostratigraphic reservoirs

LIU Huaqing1, LIU Zongbao2, WU Kongyou3, XU Huaimin4, YANG Zhanlong1, SUN Xiping5, NI Changkuan1, KANG Jilun6, WANG Mu7, JIN Jikun6   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. School of Earth Sciences, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    3. School of Geosciences, China University of Petroleum(East China), Qingdao 266580, Shandong, China;
    4. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    5. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China;
    6. Research Institute of Exploration and Development, PetroChina Tuha Oilfield Company, Hami, 839009, Xinjiang, China;
    7. Research Institute of Exploration and Development, PetroChina Qinghai Oilfield Company, Dunhuang 736202, Gansu, China
  • Received:2020-07-10 Revised:2020-10-18 Online:2021-02-01 Published:2021-01-25

Abstract: Based on the research results during the 13th Five-Year Plan period,two sets of technology system of play evaluation,trap boundary identification and effectiveness evaluation for lithostratigraphic reservoirs were summarized by combining geology with geophysical exploration and highlighting the application of intelligent technology.(1)The play evaluation technology system for lithostratigraphic reservoirs outside the source area is based on quantitative evaluation of fault/sand body migration system,effectiveness evaluation of fault-related mudstone seals,weathered-clay identification in unconformity belt and quantitative evaluation of sealing ability. (2)The trap boundary identification and effectiveness evaluation technology system for lithostratigraphic reservoirs is based on the recognition of subtle sequence boundary and the establishment of high-frequency sequence framework,seismic prediction of sedimentary system distribution based on multi-attribute clustering in laterally changing seismic window,and thin interbedded reservoir prediction based on sparse theoretical seismic inversion and stratal slicing using minimum seismic interference frequency data. After being popularized and applied, these technologies provide strong technological support for deploying risk exploration wells in related basins.

Key words: lithostratigraphic reservoirs, play evaluation technology, trap evaluation technology, migration system, sealing effectiveness, weathered-clay bed, unconformity structure

CLC Number: 

  • TE122.1
[1] 贾承造,赵文智,邹才能,等. 岩性地层油气藏地质理论与勘探技术. 石油勘探与开发,2007,34(3):257-272. JIA C Z,ZHAO W Z,ZOU C N,et al. Geological theory and exploration technology for lithostratigraphic hydrocarbon reservoirs. Petroleum Exploration and Development,2007,34(3):257-272.
[2] 邹才能,郭秋麟,王宁,等. SY/T 6894-2012岩性地层区带评价技术规范.北京:石油工业出版社,2013. ZOU C N,GUO Q L,WANG N,et al. SY/T 6894-2012 Technical specifications for lithologic and stratigraphic play evaluation. Beijing:Petroleum Industry Press,2013.
[3] 陶士振,袁选俊,侯连华,等. 中国岩性油气藏区带类型、地质特征与勘探领域. 石油勘探与开发,2016,43(6):863-872. TAO S Z,YUAN X J,HOU L H,et al. Play types,geologic characteristics and exploration domains of lithological reservoirs in China. Petroleum Exploration and Development,2016, 43(6):863-872.
[4] 侯连华,杨帆,陶士振,等. 地层油气藏.北京:地质出版社,2017. HOU L H,YANG F,TAO S Z,et al. Stratigraphic reservoir. Beijing:Geological Publishing House,2017.
[5] 陶士振,李建忠,柳少波,等. 远源/次生油气藏形成与分布的研究进展和展望. 中国矿业大学学报,2017,46(4):633-648. TAO S Z,LI J Z,LIU S B,et al. Formation condition,distribution law and exploration potential of far-source secondary oil and gas reservoirs. Journal of China University of Mining & Technology,2017,46(4):633-648.
[6] LARUE D K,HOVADIK J. Connectivity of channelized reservoirs:a modelling approach. Petroleum Geoscience,2006,12(4):291-308.
[7] GE H X,ANDERSON J K. Fault throw profile and kinematics of normal fault:Conceptual models and geologic examples. Geological Journal of China Universities,2007,13(1):75-88.
[8] BAUDON C,CARTWRIGHT J A. 3D seismic characterization of an array of blind normal faults in the Levant Basin,EasternMediterranean. Journal of Structural Geology,2008,30(6):746-760.
[9] MORRIS A,FERRILL D A,HENDERSON D B. Slip-tendency analysis and fault reactivation. Geology,1996,24(3):275-278.
[10] ROWAN M G,HART B S,NELSON S,et al. Three-dimensional geometry and evolution of a salt-related growth-fault array:Eugene Island 330 field,offshore Louisiana,Gulf of Mexico. Marine and Petroleum Geology,1998,17:309-328.
[11] 付晓飞,孙兵,王海学,等.断层分段生长定量表征及在油气成藏研究中的应用. 中国矿业大学学报,2015,44(3):271-281. FU X F,SUN B,WANG H X,et al. Fault segmentation growth quantitative characterization and its application on sag hydrocarbon accumulation research. Journal of China University of Mining & Technology,2015,44(3):271-281.
[12] FRISTAD T,GROTH A,YIELDING G,et al. Quantitative fault seal prediction:a case study from Oseberg Syd. Norwegian Petroleum Society Special Publications,1997,7(97):107-124.
[13] 吴孔友,查明,柳广弟. 准噶尔盆地二叠系不整合面及其油气运聚特征.石油勘探与开发,2002,29(2):53-57. WU K Y,ZHA M,LIU G D.The unconformity surface in the Permian of Junggar Basin and the character of oil-gas migration and accumulation. Petroleum Exploration and Development, 2002,29(2):53-57.
[14] 吴孔友,查明,洪梅. 准噶尔盆地不整合结构的地球物理响应及油气成藏意义.石油实验地质,2003,25(4):328-332. WU K Y,ZHA M,HONG M. Relationship of reservoir formation with unconformities and their geophysical response in the Junggar Basin. Petroleum Geology & Experiment,2003,25(4):328-332.
[15] 熊尚发,朱园健,周茹,等. 白水黄土-红黏土化学风化强度的剖面特征与粒度效应.第四纪研究,2008,28(5):812-821. XIONG S F,ZHU Y J,ZHOU R,et al. Chemical weathering intensity and its grain size dependence for the loess red clay deposit of the Baishui section,Chinese Loess Plateau.Quaternary Sciences,2008,28(5):812-821.
[16] 白斌,周立发,邹才能,等. 准噶尔盆地南缘若干不整合界面的厘定. 石油勘探与开发,2010,37(3):270-280. BAI B,ZHOU L F,ZOU C N,et al. Definition of some unconformities in the south margin of Junggar Basin,NW China. Petroleum Exploration and Development,2010,37(3):270-280.
[17] 杨占龙,沙雪梅,魏立花,等. 2019地震隐性层序界面识别、高频层序格架建立与岩性圈闭勘探:以吐哈盆地西缘侏罗系-白垩系为例.岩性油气藏,2019,31(6):1-13. YANG Z L,SHA X M,WEI L H,et al. Seismic subtle sequence boundary identification,high-frequency sequence framework establishment and lithologic trap exploration:a case study of Jurassic to Cretaceous in the western margin of Turpan-Kumul Basin. Lithologic Reservoirs,2019,31(6):1-13.
[18] 王明春,明君. 一种变时窗地震波形分类技术及其应用. 中国海上油气,2011,23(5):303-306. WANG M C,MING J. A technique of seismic waveform classification within a variable time window and its application. China Offshore Oil and Gas,2011,23(5):303-306.
[19] 袁成,苏明军,倪长宽. 基于稀疏贝叶斯学习的薄储层预测方法及应用.岩性油气藏,2021,33(1):229-238. YUAN C,SU M J,NI C K. A novel method of thin reservoir identification based on sparse Bayesian learning and its application. Lithologic Reservoirs,2021,33(1):229-238.
[20] NI C K,HU G M,LIU H Q,et al.Thin-bed detection using amplitude slicing at minimum interference frequency:Method and application. Interpretation,2018,7(1):1-43.
[21] 刘化清,苏明军,倪长宽,等. 薄砂体预测的地震沉积学研究方法. 岩性油气藏,2018,30(2):1-11. LIU H Q,SU M J,NI C K,et al.Thin bed prediction from interbeded background:Revised seismic sedimentological method. Lithologic Reservoirs,2018,30(2):1-11.
[22] DOU Y. A method to remove depositional background data based on the Modified Kernel Hebbian Algorithm. Acta Geophysics, 2020,68(3):701-710.
[23] WIDESS M B. How thin is thin bed? Geophysics,1973,38(6):1176-1180.
[1] DOU Lirong, LI Zhi, YANG Zi, ZHANG Xingyang, KANG Hailiang, ZHANG Mingjun, ZHANG Liangjie, DING Liangbo. Exploration progress and outlook for lithostratigraphic reservoirs of CNPC overseas [J]. Lithologic Reservoirs, 2023, 35(6): 1-9.
[2] YANG Yuanliang, ZHU Xiaomin, MA Ruiguo, DONG Yanlei, HOU Shuaijun, JIANG Qiang, LIU Chengquan. Hydrocarbon accumulation rules of Neogene in Xinchun area,Junggar Basin [J]. Lithologic Reservoirs, 2017, 29(4): 20-29.
[3] GAO Changhai, ZHA Ming, ZHAO Xianzheng, PENG Pu. Migration systems and hydrocarbon accumulation models of buried hill reservoirs in Jizhong Depression [J]. Lithologic Reservoirs, 2015, 27(2): 26-30.
[4] HAN Yonglin, WANG Haihong, CHEN Zhihua, WANG Fang, LIANG Xiaowei,WANG Chengyu, NIU Xiaobing. Paleosalinity analysis and trace element geochemistry of Chang 6 member in Gengwan-Shijiawan area, Ordos Basin [J]. Lithologic Reservoirs, 2007, 19(4): 20-26.
[5] WEI Pingsheng, PAN Shuxin, WAN G Jiangong,LEI Ming. Study of the relationship between lithostratigraphic reservoirs and lakeshore line:An introduction on lakeshore line controlling oil /gas reservoirs in sag basin [J]. Lithologic Reservoirs, 2007, 19(1): 27-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[3] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[4] WANG Yan-qi1,HU Min-yi1,LIU Fu-yan1,WANG Hui1,HU Zhi-hua1,2. [J]. LITHOLOGIC RESERVOIRS, 2008, 20(3): 44 -48 .
[5] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[6] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[7] HUANG Long, TIAN Jingchun, XIAO Ling, WANG Feng. Characteristics and evaluation of Chang 6 sandstone reservoir of Upper Triassic in Fuxian area, Ordos Basin[J]. Lithologic Reservoirs, 2008, 20(1): 83 -88 .
[8] YANG Shiwei, LI Jianming. Characteristics and geological significance of seismites[J]. Lithologic Reservoirs, 2008, 20(1): 89 -94 .
[9] LI Chuanliang, TU Xingwan. Two types of stress sensitivity mechanisms for reservoir rocks:Being favorable for oil recovery[J]. Lithologic Reservoirs, 2008, 20(1): 111 -113 .
[10] LI Jun, HUANG Zhilong, LI Jia, LIU Bo. The pool-forming pattern in the condition of arching in the southeast uplift in Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(1): 57 -61 .
TRENDMD: