Lithologic Reservoirs ›› 2025, Vol. 37 ›› Issue (3): 73-83.doi: 10.12108/yxyqc.20250307

• PETROLEUM EXPLORATION • Previous Articles    

Characteristics and quantitative prediction of structural fractures in the second member of Triassic Xujiahe Formation in Xinchang area, western Sichuan Basin

YANG Xu1,2, BAI Mingsheng1,2, GONG Hanbo3, LI Gao1,2, TAO Zuwen1   

  1. 1. College of Petroleum and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China;
    2. Underbalanced/Gas Drilling Laboratory, National Engineering Research Center of Oil & Gas Drilling and Completion Technology, Chengdu 610500, China;
    3. Southwest Oil & Gas Branch, Sinopec, Chengdu 610041, China
  • Received:2024-08-29 Revised:2024-11-06 Published:2025-05-10

Abstract: The second member of Triassic Xujiahe Formation in Xinchang area of western Sichuan Basin has dense reservoirs,the development and distribution of structural fractures are crucial for the efficient development of gas reservoirs. Based on imaging logging data,the development characteristics of reservoir structural fractures in the study area were analyzed. Based on the heterogeneous rock mechanics model,the numerical simulation and quantitative prediction of the tectonic stress field and structural fractures in the target layer during Himalayan period were carried out by using the finite element simulation method,rock fracture criterion and elastic strain energy. The results show that:(1)The fractures in the second member of Triassic Xujiahe Formation in Xinchang area of western Sichuan are mainly structural shear fractures,with fractures trending in NWW direction,NEE direction,near EW direction,and SN direction according to their development degree. The formation stages of the fractures mainly include the late Indosinian,Yanshanian,early Himalayan,and late Himalayan. The fractures formed in the late Indosinian and Yanshanian filled with calcite or quartz,and only the fractures formed in Himalayan were effective.(2)During the Himalayan movement,the maximum horizontal principal stress of the second member of Xujiahe Formation was mainly 65-100MPa,and the minimum horizontal principal stress was mainly 50-85MPa. The tectonic position and lithofacies of the strata controlled the stress distribution.(3)The average density of structural fractures in the research area is relatively small,at 0.28 fractures per meter,and the density of fractures near the faults is greater than 1.20 fractures per meter. The density of fractures in different lithofacies varies significantly. The distribution of fractures is jointly controlled by factors such as faults,tectonic position,and lithofacies.(4)The average absolute percentage error between the fracture prediction results and the measured results is 11.40%,and the prediction results are reliable.

Key words: structural fractures, structural stress field, numerical simulation, fracture quantitative prediction, tectonic position, lithofacies, the second member of Xujiahe Formation, Triassic, Xinchang area, western Sichuan Depression

CLC Number: 

  • TE122.2
[1] 曾联波,吕鹏,屈雪峰,等. 致密低渗透储层多尺度裂缝及其形成地质条件[J]. 石油与天然气地质,2020,41(3):449-454. ZENG Lianbo,LYU Peng,QU Xuefeng,et al. Multi-scale fractures in tight sandstone reservoirs with low permeability and geological conditions of their development[J]. Oil & Gas Geology, 2020,41(3):449-454.
[2] 康保平,黄小燕,郭淑萍,等. 川西坳陷须二气藏气田水成因、运移其成藏演化[J]. 石油与天然气地质,2018,39(2):309-317. KANG Baoping,HUANG Xiaoyan,GUO Shuping,et al. Origin, migration,and accumulation evolution of reservoir water in the gas field with Xu 2 gas reservoir,western Sichuan Depression, Sichuan Basin[J]. Oil & Gas Geology,2018,39(2):309-317.
[3] 罗群,张泽元,袁珍珠,等. 致密油甜点的内涵、评价与优选:以酒泉盆地青西凹陷白垩系下沟组为例[J]. 岩性油气藏, 2022,34(4):1-12. LUO Qun,ZHANG Zeyuan,YUAN Zhenzhu,et al. Connotation, evaluation and optimization of tight oil sweet spots:A case study of Cretaceous Xiagou Formation in Qingxi Sag,Jiuquan Basin[J]. Lithologic Reservoirs,2022,34(4):1-12.
[4] 刘冬冬,杨东旭,张子亚,等. 基于常规测井和成像测井的致密储层裂缝识别方法:以准噶尔盆地吉木萨尔凹陷芦草沟组为例[J]. 岩性油气藏,2019,31(3):76-85. LIU Dongdong,YANG Dongxu,ZHANG Ziya,et al. Fracture identification for tight reservoirs by conventional and imaging logging:A case study of Permian Lucaogou Formation in Jimsar Sag,Junggar Basin[J]. Lithologic Reservoirs,2019,31(3):76-85.
[5] 董国良,周文,高伟平,等. 川西坳陷新场气田须家河组二段储层裂缝特征及识别[J]. 复杂油气藏,2012,5(2):5-9. DONG Guoliang,ZHOU Wen,GAO Weiping,et al. Reservoir fractures characteristics and identification of the second member of Xujiahe Formation in Xinchang Gasfield of western Sichuan Depression[J]. Complex Hydrocarbon Reservoirs,2012, 5(2):5-9.
[6] 李王鹏,刘忠群,胡宗全,等. 四川盆地川西坳陷新场须家河组二段致密砂岩储层裂缝发育特征及主控因素[J]. 石油与天然气地质,2021,42(4):884-897. LI Wangpeng,LIU Zhongqun,HU Zongquan,et al. Characteristics of and main factors controlling the tight sandstone reservoir fractures in the 2nd member of Xujiahe Formation in Xinchang area,Western Sichuan Depression,Sichuan Basin[J]. Oil & Gas Geology,2019,42(4):884-897.
[7] 任浩林,刘成林,刘文平,等. 四川盆地富顺-永川地区五峰组:龙马溪组应力场模拟及裂缝发育区预测[J]. 地质力学学报,2020,26(1):74-83. REN Haolin,LIU Chenglin,LIU Wenping,et al. Stress field simulation and fracture development prediction of the Wufeng Formation-Longmaxi Formation in the Fushun-Yongchuan Block,Sichuan Basin[J]. Journal of Geomechanics,2020,26(1):74-83.
[8] 刘俊州,韩磊,时磊,等. 致密砂岩储层多尺度裂缝地震预测技术:以川西XC地区为例[J]. 石油与天然气地质,2021,42(3):747-754. LIU Junzhou,HAN Lei,SHI Lei,et al. Seismic prediction of tight sandstone reservoir fractures in XC area western Sichuan Basin[J]. Oil & Gas Geology,2021,42(3):747-754.
[9] 董敏,郭伟,张林炎,等. 川南泸州地区五峰-龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏,2022,34(1):43-51. DONG Min,GUO Wei,ZHANG Linyan,et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi Formation in Luzhou area,southern Sichuan Basin[J]. Lithologic Reservoirs,2022,34(1):43-51.
[10] 熊天鹤,袁红旗. 3Dmove模拟构造裂缝预测技术在川西新场构造须二段中的应用[J]. 矿产勘查,2018,9(6):1276-1280. XIONG Tianhe,YUAN Hongqi. Application of 3Dmove fracture prediction technique in predicting in Tx2 formation of Xinchang area[J]. Mineral Exploration,2018,9(6):1276-1280.
[11] 黄静,李琦,康元欣,等. 致密砂岩气储层微观孔隙及成岩作用特征:以川西新场地区须五段为例[J]. 岩性油气藏,2016, 28(2):24-32. HUANG Jing,LI Qi,KANG Yuanxin,et al. Characteristics of micropores and diagenesis of tight sandstone reservoirs:A case study from the fifth member of Xujiahe Formation in Xinchang area,western Sichuan Depression[J]. Lithologic Reservoirs, 2016,28(2):24-32.
[12] 李阳兵. 川西坳陷新场构造带须二段致密砂岩储层特征及综合评价[J]. 断块油气田,2024,31(4):629-636. LI Yangbing. Characteristics and comprehensive evaluation of tight sandstone reservoirsin Xu2 member of Xinchang structural belt in western Sichuan Depression[J]. Fault-Block Oil & Gas Field,2024,31(4):629-636.
[13] 张世华,田军,叶素娟,等. 川西坳陷新场构造带须二段气藏成藏过程[J]. 天然气工业,2019,39(增刊1):17-22. ZHANG Shihua,TIAN Jun,YE Sujuan,et al. Gas accumulation process of the Xu-2 Formation in Xinchang structural belt, western Sichuan Depression[J]. Natural Gas Industry,2019,39(Suppl 1):17-22.
[14] 田军,张世华,叶素娟,等. 川西坳陷新场构造带须二段气藏类型划分及成藏主控因素[J]. 成都理工大学学报(自然科学版),2017,44(6):659-667. TIAN Jun,ZHANG Shihua,YE Sujuan,et al. Classification of gas accumulation types and main controlling factors of gas accumulation of the Xu-2 member in Xinchang structural zone, western Sichuan Depression,China[J]. Journal of Chengdu University of Technology(Science & Technology Edition),2017, 44(6):659-667.
[15] 苏亦晴,杨威,金惠,等. 川西北地区三叠系须家河组深层储层特征及主控因素[J]. 岩性油气藏,2022,34(5):86-99. SU Yiqing,YANG Wei,JIN Hui,et al. Deep-reservoir characteristics and main controlling factors of Triassic Xujiahe Formation in northwestern Sichuan Basin[J]. Lithologic Reservoirs, 2022,34(5):86-99.
[16] 李朋威,胡宗全,刘忠群,等. 川西新场地区须二段深层致密砂岩储层类型与差异控储作用[J]. 天然气地球科学,2024, 35(7):1136-1149. LI Pengwei,HU Zongquan,LIU Zhongqun,et al. Types of the deep tight sandstone reservoirs and their different controlling in the second member of Xujiahe Formation in Xinchang area, western Sichuan Basin[J]. Natural Gas Geoscience,2024,35(7):1136-1149.
[17] 马旭杰,周文,唐瑜,等. 川西新场地区须家河组二段气藏天然裂缝形成期次的确定[J]. 天然气工业,2013,33(8):15-19. MA Xujie,ZHOU Wen,TANG Yu,et al. Timing of natural fractures formed in the gas reservoirs of the 2nd member of Xujiahe Fm in the Xinchang area,western Sichuan Basin[J]. Natural Gas Industry,2013,33(8):15-19.
[18] 罗龙,高先志,孟万斌,等. 深埋藏致密砂岩中相对优质储层形成机理:以川西坳陷新场构造带须家河组为例[J]. 地球学报,2017,38(6):930-944. LUO Long,GAO Xianzhi,MENG Wanbin,et al. The formation mechanism of the relatively high-quality reservoir in tight sandstones with deep burial:A case study of Xujiahe Formation in Xinchang structural belt of western Sichuan Depression[J]. Acta Geoscientia Sinica,2017,38(6):930-944.
[19] 杨映涛,李旻,张庄,等. 叠覆型致密砂岩气区形成条件[J]. 天然气工业,2019,39(增刊1):30-35.YANG Yingtao,LI Min,ZHANG Zhuang,et al. Formation conditions of overlapping tight sandstone gas areas[J]. Natural Gas Industry,2019,39(Suppl 1):30-35.
[20] JIU Kai,DING Wenlong,HUANG Wenhui,et al. Simulation of paleotectonic stress fields within Paleogene shale reservoirs and prediction of favorable zones for fracture development within the Zhanhua Depression,Bohai Bay Basin,east China[J]. Journal of Petroleum Science and Engineering,2013,110:119-131.
[21] 包汉勇,刘超,甘玉青,等. 四川盆地涪陵南地区奥陶系五峰组-志留系龙马溪组页岩古构造应力场及裂缝特征[J]. 岩性油气藏,2024,36(1):14-22. BAO Hanyong,LIU Chao,GAN Yuqing,et al. Paleotectonic stress field and fracture characteristics of shales of Ordovician Wufeng Formation to Silurian Longmaxi Formation in southern Fuling area,Sichuan Basin[J]. Lithologic Reservoirs,2024,36(1):14-22.
[22] 李辉,林承焰,任丽华,等. 基于岩相-断层破碎带耦合约束的构造裂缝预测研究:以博兴洼陷大芦湖油田沙三中亚段为例[J]. 中国矿业大学学报,2020,49(2):305-317. LI Hui,LIN Chengyan,REN Lihua,et al. Tectonic fracture prediction based on the coupling constraint of lithofacies and fault damage zone:A case study of the 2nd sand group of middle Es3 member in Daluhu oilfield,Boxing subsag[J]. Journal of China University of Mining & Technology,2020,49(2):305-317.
[23] 商晓飞,赵磊,易杰,等. 川西新场地区须家河组二段砂体沉积充填特征及定量地质建模[J]. 中国海上油气,2022,34(4):144-155. SHANG Xiaofei,ZHAO Lei,YI Jie,et al. Sedimentary filling characteristics and quantitative geological modeling of sand bodies in Xu2 member of Xujiahe Formation in Xinchang area, western Sichuan Basin[J]. China Offshore Oil and Gas,2022, 34(4):144-155.
[24] LIU Jingshou,DING Wenlong,GU Yang,et al. Methodology for predicting reservoir breakdown pressure and fracture opening pressure in low-permeability reservoirs based on an in situ stress simulation[J]. Engineering Geology,2018,246:222-232.
[25] 黄国权. 有限元法基础及ANSYS应用[M]. 北京:机械工业出版社,2004. HUANG Guoquan. Foundation of the finite element method and application of ANSYS[M]. Beijing:Machinery Industry Press,2004.
[26] 罗乃菲. 川西坳陷中段须家河组致密储层特征及成因机制[D]. 成都:成都理工大学,2015. LUO Naifei. Characteristics and genetic mechanism of tight reservoir in the second member of the Upper Triassic Xujiahe Formation in the middle part of western Sichuan Depression[D]. Chengdu:Chengdu University of Technology,2015.
[27] 季宗镇,戴俊生,汪必峰. 地应力与构造裂缝参数间的定量关系[J]. 石油学报,2010,31(1):68-72. JI Zongzhen,DAI Junsheng,WANG Bifeng. Quantitative relationship between crustal stress and parameters of tectonic fracture[J]. Acta Petrolei Sinica,2010,31(1):68-72.
[28] 赵建生. 断裂力学及断裂物理[M]. 武汉:华中科技大学出版社,2003. ZHAO Jiansheng. Fracture mechanics and fracture physics[M]. Wuhan:Huazhong University of Science and Technology Press,2003.
[29] REN Qiqiang,JIN Qiang,FENG Jianwei,et al. Simulation of stress fields and quantitative prediction of fractures distribution in upper Ordovician biological limestone formation within Hetianhe field,Tarim Basin,NW China[J]. Journal of Petroleum Science and Engineering,2019,173:1236-1253.
[30] LI Hui,LIN Chengyan,REN Lihua,et al. Quantitative prediction of multi-period tectonic fractures based on integrated geological-geophysical and geomechanics data in deep carbonate reservoirs of Halahatang oilfield in northern Tarim Basin[J]. Marine and Petroleum Geology,2021,134:105377.
[31] 赵万金,周春雷. 基于Contourlet变换的图像增强技术识别裂缝[J]. 岩性油气藏,2017,29(3):103-109. ZHAO Wanjin,ZHOU Chunlei. Application of image enhancement technique to fracture identification based on Contourlet transform[J]. Lithologic Reservoirs,2017,29(3):103-109.
[32] LI Hui,TANG Hongming,QIN Qirong,et al. Characteristics, formation periods and genetic mechanisms of tectonic fractures in the tight gas sandstones reservoir:A case study of Xujiahe Formation in YB area,Sichuan Basin,China[J]. Journal of Petroleum Science and Engineering,2019,178:723-735.
[33] 陈星岳,徐占杰,杜红权,等. 川东北须家河组致密砂岩裂缝储集体识别与控藏作用[J]. 天然气地球科学,2025,36(1):114-126. CHEN Xingyue,XU Zhanjie,DU Hongquan,et al. Identification of fractured reservoir and its effect on hydrocarbon accumulation of the Xujiahe Formation tight sandstone in the Northeast Sichuan Basin[J]. Natural Gas Geoscience,2025,36(1):114-126.
[34] 杜江民,龙鹏宇,秦莹民,等. 柴达木盆地英西地区渐新统E32储层特征及成藏模式[J]. 岩性油气藏,2021,33(5):1-10. DU Jiangmin,LONG Pengyu,QIN Yingmin,et al. Characteristics and accumulation model of Oligocene E32 reservoir in Yingxi area,Qaidam Basin[J]. Lithologic Reservoirs,2021,33(5):1-10.
[1] XIE Huiwen, ZHANG Liang, WANG Bin, LUO Haoyu, ZHANG Ke, ZHANG Guowei, LI Ling, SHEN Lin. Characteristics of Triassic paleostructure and their control on sedimentation in Kuqa Depression,Tarim Basin [J]. Lithologic Reservoirs, 2025, 37(3): 13-22.
[2] XIAO Wenhua, YANG Jun, YAN Baonian, WANG Jianguo, LI Shaoyong, MA Qilin, LI Zonglin, XUE Huanzhao. Characteristics and main controlling factors of Triassic Chang 8 tight sandstone reservoir in Huanqing area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(3): 23-32.
[3] DENG Gaoshan, DONG Xuemei, YU Haitao, ZHANG Jie, YUE Xiwei, REN Junmin, JIANG Tao. Hydrocarbon accumulation conditions and exploration potential of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(3): 59-72.
[4] LI Xiang, FU Lei, WEI Pu, LI Junfei, XU Gang, CAO Qianqian, ZHONG Yang, WANG Zhenpeng. Restoration of sedimentary paleogeography and its control on sedimentary system: A case study of the Triassic Baikouquan Formation in Shixi area of Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(2): 38-48.
[5] LIU Yong, LIU Yongyang, ZHAO Shengxian, YIN Meixuan, LI Bo, CHEN Lei, WU Shuaicai, XIE Shengyang. Paleogeomorphological characteristics and reservoir control of the sedimentary period of Silurian Longmaxi Formation in Luzhou-Yuxi area [J]. Lithologic Reservoirs, 2025, 37(2): 49-59.
[6] LIANG Feng, CAO Zhe. Characteristics,formation environment and enrichment model of Triassic Chang 7 shale oil reservoir in Huachi area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(1): 24-40.
[7] HE Yan, XU Weina, DANG Sisi, MOU Lei, LIN Shaoling, LEI Zhangshu. Genesis and exploration significance of calcareous intercalation of Jurassic Xishanyao Formation in Luliang area,Junggar Basin [J]. Lithologic Reservoirs, 2025, 37(1): 90-101.
[8] YANG Jie, ZHANG Wenping, DING Chaolong, SHI Cunying, MA Yunhai. Characteristics and main controlling factors of tight gas reservoirs in the second member of Triassic Xujiahe Formation,central Sichuan Basin [J]. Lithologic Reservoirs, 2025, 37(1): 137-148.
[9] WU Jia, ZHAO Weiwei, LIU Yuchen, LI Hui, XIAO Ying, YANG Di, WANG Jianan. Shale rock-reservoir collocation and hydrocarbon enrichment rule of Triassic Chang 7 member in Yan’an area,Ordos Basin [J]. Lithologic Reservoirs, 2025, 37(1): 170-181.
[10] CHEN Xiao, MIAO Yun, LI Wei, XIE Mingying, SHI Hao, WANG Weifeng. Calculation method for reasonable oil-water well ratio in the edge water drive offshore sandstone oilfield [J]. Lithologic Reservoirs, 2025, 37(1): 194-200.
[11] ZHAO Jun, LI Yong, WEN Xiaofeng, XU Wenyuan, JIAO Shixiang. Prediction of shale formation pore pressure based on Zebra Optimization Algorithm-optimized support vector regression [J]. Lithologic Reservoirs, 2024, 36(6): 12-22.
[12] CUI Chuanzhi, LI Jing, WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption [J]. Lithologic Reservoirs, 2024, 36(6): 181-188.
[13] CHEN Kang, DAI Juncheng, WEI Wei, LIU Weifang, YAN Yuanyuan, XI Cheng, LYU Yan, YANG Guangguang. Lithofacies classification of tight sandstone based on Bayesian Facies-AVO attributes:A case study of the first member of Jurassic Shaximiao Formation in central Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(5): 111-121.
[14] WANG Zixin, LIU Guangdi, YUAN Guangjie, YANG Henglin, FU Li, WANG Yuan, CHEN Gang, ZHANG Heng. Characteristics and reservoir control of source rocks of Triassic Chang 7 member in Qingcheng area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 133-144.
[15] YIN Hu, QU Hongjun, SUN Xiaohan, YANG Bo, ZHANG Leigang, ZHU Rongxing. Characteristics of deep-water deposits and evolution law of Triassic Chang 7 reservoir in southeastern Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(5): 145-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: