Lithologic Reservoirs ›› 2009, Vol. 21 ›› Issue (2): 64-69.doi: 10.3969/j.issn.1673-8926.2009.02.013

Previous Articles     Next Articles

Volcanic reservoir characteristics and genetic mechanism of Carboniferous in Niudong area of Santanghu Basin

LIU Juntian1,LIU Yuanping2,GUOMozhen3,QIN Xinping1,YAN Ligang1   

  1. 1. Research Institute of Exploration and Development, Tuha Oilfield Company, PetroChina, Hami 839009, China; 2. College of Geosciences, Yangtze University, Jingzhou 434023, China; 3. Hangzhou Research Institute of Petroleum Geology, PetroChina, Hangzhou 310023, China
  • Online:2009-06-16 Published:2009-06-16

Abstract:

Based on the petrological characteristics and sequence features, the volcanic facies and logging response characteristics ofCarboniferous inNiudongarea are analyzed. There are four volcanic facies in the the studyarea: effusive facies, eruption facies, empty accumulative facies and volcanic sedimentary facies, which can be well distinguished by logging curve GR and DEN. And volcanic sedimentary facies can get better response by Rt. The volcanic reservoir spaces include primary and secondary accumulation spaces. The primary accumulation spaces mainly include air pores, intercrystal pores, shrinkage pores and fractures. The secondary accumulation spaces mainly include dissolved pores, structural fractures and weathered fractures. The main factors for forming high quality volcanic reservoirs are magma composition, effusive facies belt and later reformation. Andesite, formed by intermediate rock with high viscosity, slow fluidity and slowgas dispersion, is the optimum reservoir. The end period of eruptive cycle is the favorable period for forming amygdaloid body, gas hole and auto-fracture. The weathering and eluviation in the period of eruptive cycle provide forming conditions for various corrosion pores. The genetic mechanism of volcanic reservoir space is of significance for seeking volcanic reservoirs.

Key words: conglomerate body, seismic response, reservoir prediction, dynamic analysis, comprehensive evaluation

[1] 边伟华,陈玉魁,唐华风,等.火山岩相的岩屑识别———以松辽盆地南部东岭探区为例[J].吉林大学学报(地球科学版),2007,37(6):1 104-1 109.
[2] 张厚福,徐兆辉.从油气藏研究的历史论地层-岩性油气藏勘探[J].岩性油气藏,2008,20(1):114-123.
[3] 张景廉,石兰亭,陈启林,等.柴达木盆地地壳深部构造特征及油气勘探新领域[J].岩性油气藏,2008,20(2):29-36.
[4] 王璞珺,吴河勇,庞颜明,等.松辽盆地火山岩相:相序、相模式与储层物性的定量关系[J].吉林大学学报(地球科学版),2006,36(5):805-812.
[5] 王璞珺,迟元林,刘万洙,等.松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版),2003,33(4):449-456.
[6] 蔡国钢,张坤,刘立,等.辽河盆地东部凹陷中部火山岩储层特征研究[J].海洋石油,2003,23(2):32-37.
[7] 曹宝军,刘德华.浅析火山岩油气藏分布与勘探、开发特征[J].特种油气藏,2004,11(1):18-20.
[8] 范宜仁,黄隆基,代诗华,等.交会图技术在火成岩岩性和裂缝识别中的应用[J].测井技术,1999,23(1):53-56.
[9] 陈建文,魏斌,李长山,等.火山岩岩性的测井识别[J].地学前缘,2000,7(4):458.
[10] 郑建东,刘传平,李红娟,等.徐深气田深层火山岩岩性测井识别与应用[J].国外测井技术,2006,21(3):11-14.
[11] 何国貌,张峰,王文霞.三塘湖盆地火山岩油气藏特征及有利成藏条件[J].吐哈油气,2004,9(4):309-311.
[12] 林克湘,李艺斌,龚文平,等.新疆三塘湖盆地晚古生代火山岩地球化学特征及构造环境[J].高校地质学报,1997,3(2):202-211.
[13] 袁明生,张映红,韩宝福,等.三塘湖盆地火山岩地球化学特征及晚古生代大地构造环境[J].石油勘探与开发,2002,29(6):32-34.
[14] 马雪,冯成贵,虞卫东.新疆巴里坤县三塘湖北卡拉岗组火山岩特征[J].新疆地质,2005,23(3):234-238.
[15] 文玲.靖安油田延长组低孔低渗储层的扫描电镜研究[J].电子显微学报,2003,22(4):352-357.
[1] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[2] HE Wenyuan, CHEN Keyang. Prediction method for lithologic reservoirs in Doshan slope zone of South Turgai Basin,Kazakhstan [J]. Lithologic Reservoirs, 2024, 36(4): 1-11.
[3] LI Bisong, SU Jianlong, PU Yong, MIAO Zhiwei, ZHANG Wenjun, XIAO Wei, ZHANG Lei, JIANG Yu. Facies-controlled karst characterization and effective reservoir prediction of Permian Maokou Formation in Yuanba area,Sichuan Basin [J]. Lithologic Reservoirs, 2024, 36(1): 69-77.
[4] ZHANG Changmin, ZHANG Xianghui, ZHU Rui, FENG Wenjie, YIN Taiju, YIN Yanshu, Adrian J. HARTLEY. Research progress and application prospect of distributive fluvial system [J]. Lithologic Reservoirs, 2023, 35(5): 11-25.
[5] LI Shengjun, GAO Jianhu, ZHANG Fanchang, HE Dongyang, GUI Jinyong. A strong seismic energy reduction method under compressed sensing [J]. Lithologic Reservoirs, 2023, 35(4): 70-78.
[6] ZHANG Wenting, LONG Liwen, XIAO Wenhua, WEI Haoyuan, LI Tiefeng, DONG Zhenyu. Sedimentary characteristics and reservoir prediction of Xiagou Formation in Kulongshan structural belt,Qingxi Sag,Jiuquan Basin [J]. Lithologic Reservoirs, 2021, 33(1): 186-197.
[7] SUN Xiping, ZHANG Xin, LI Xuan, HAN Yongke, WANG Chunming, WEI Jun, HU Ying, XU Guangcheng, ZHANG Ming, DAI Xiaofeng. Reservoir prediction for weathering and leaching zone of bedrock buried hill based on seismic pre-stack depth migration [J]. Lithologic Reservoirs, 2021, 33(1): 220-228.
[8] CAO Sijia, SUN Zengjiu, DANG Huqiang, CAO Shuai, LIU Dongmin, HU Shaohua. Prediction technology of tight oil thin sand reservoir and its application effect: a case study of Lower Cretaceous Quantou Formation in Aonan block,Songliao Basin [J]. Lithologic Reservoirs, 2021, 33(1): 239-247.
[9] WU Qingpeng, LYU Ximin, CHEN Juan, ZHOU Zaihua, YUAN Cheng. Sedimentary characteristics and exploration potentials of Lower Cretaceous Xiagou Formation in Ying'er Sag,Jiuquan Basin [J]. Lithologic Reservoirs, 2020, 32(5): 54-62.
[10] LUO Ze, XIE Mingying, TU Zhiyong, WEI Xihui, CHEN Yiming. A set of recognition techniques for thin reservoirs with unconsolidated high-argillaceous sandstone: a case study from X oilfield in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2019, 31(6): 95-101.
[11] ZHOU Huajian. Prediction method of channel sand body based on prestack migration in OVT domain [J]. Lithologic Reservoirs, 2019, 31(4): 112-120.
[12] ZHANG Yunyin, WEI Xinwei, TAN Mingyou, GAO Qiuju, ZHU Dingrong, LIN Shuxi. Removal of seismic strong shield interface based on compressed sensing technology and its application [J]. Lithologic Reservoirs, 2019, 31(4): 85-91.
[13] LIU Gongli, HAN Zijun, DUAN Xinyi, ZHEN Zongyu. Seismic response characteristics and thickness prediction of thin interbedded igneous rocks [J]. Lithologic Reservoirs, 2019, 31(3): 105-112.
[14] HUANG Bin, XU Rui, FU Cheng, ZHANG Wei, SHI Zhenzhong. Multi-level fuzzy identification method for interwell thief zone [J]. Lithologic Reservoirs, 2018, 30(4): 105-112.
[15] SHI Zhanzhan, WANG Yuanjun, TANG Xiangrong, PANG Su, CHI Yuelong. Reservoir prediction based on seismic waveform classification in time-frequency domain [J]. Lithologic Reservoirs, 2018, 30(4): 98-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: