Lithologic Reservoirs ›› 2019, Vol. 31 ›› Issue (6): 95-101.doi: 10.12108/yxyqc.20190610

• EXPLORATION TECHNOLOGY • Previous Articles     Next Articles

A set of recognition techniques for thin reservoirs with unconsolidated high-argillaceous sandstone: a case study from X oilfield in Pearl River Mouth Basin

LUO Ze, XIE Mingying, TU Zhiyong, WEI Xihui, CHEN Yiming   

  1. Research Institute, Shenzhen Branch of CNOOC Ltd., Shenzhen 518000, Guangdong, China
  • Received:2019-05-20 Revised:2019-08-20 Online:2019-11-21 Published:2019-09-28

Abstract: Aiming at the problems of poor quality of logging curves,serious overlapping of wave impedance attributes,thin reservoir and strong heterogeneity caused by serious expansion of unconsolidated high-argillaceous sandstone of Hanjiang Formation in X oilfield,Pearl River Mouth Basin,a fine characterization technology for thin reservoir was formed,which is summarized as "three-step method".(1)The elastic curve reflecting real formation characteristics can be obtained by reconstructing logging curves with genetic neural network technology,and then the problem of poor quality of logging curves caused by the serious expansion of unconsolidated sandstone can be solved.(2)A new sensitive characteristic parameter DVT for the identification of thin reservoirs with unconsolidated high-argillaceous sandstone was constructed to distinguish sandstone from mudstone.(3)High resolution inversion method with waveform indication was used to predict the spatial distribution of thin reservoirs with unconsolidated high-argillaceous sandstone. Practical application shows that this technology achieved good application results in water injection efficiency,optimization implementation of adjustment wells and well pattern design of development adjustment scheme in X oilfield. A complete set of technical process has been formed for the prediction of thin reservoir with unconsolidated high-argillaceous sandstone,which solves the difficulty of accurate description of 3-5 m thin reservoir in the oilfield. This technology has reference significance for the characterization of similar reservoirs and the efficient development of oilfields.

Key words: unconsolidated high-argillaceous sandstone, neural network, waveform indication inversion, thin reservoir prediction, Hanjiang Formation, Pearl River Mouth Basin

CLC Number: 

  • TE122.2
[1] 陈长民,施和生,许仕策,等.珠江口盆地(东部)第三系油气藏形成条件.北京:科学出版社,2003. CHEN C M,SHI H S,XU S C,et al. Formation conditions of Tertiary oil and gas reservoirs in the Pearl River Mouth Basin (Eastern Part). Beijing:Science Press,2003.
[2] 李文红,李英蕾,雷霄,等.南海西部油田高泥质疏松砂岩储层数字岩心渗流特征.中国海上油气,2015,27(4):86-92. LI W H,LI Y L,LEI X,et al. Digital core percolation characteristics of loose sandstone reservoir with high mud content in western South China Sea. China Offshore Oil and Gas,2015,27(4):86-92.
[3] 韩长城,林承焰,任丽华,等.地震波形指示反演在东营凹陷王家岗地区沙四上亚段滩坝砂的应用. 中国石油大学学报(自然科学版),2017,41(2):60-69. HAN C C,LIN C Y,REN L H,et al. Application of seismic waveform inversion in Es 4 sbeach-bar sandstone in Wangjiagang area,Dongying Depression. Journal of China University of Petroleum(Edition of Natural Sciences),2017,41(2):60-69.
[4] 李雪英,李东庆,白诗缘.薄层研究方法综述.地球物理学进展,2017,29(5):2197-2203. LI X Y,LI D Q,BAI S Y. Review of thin layer studies. Progress in Geophysics,2017,29(5):2197-2203.
[5] 杨占龙,肖冬生,周隶华,等.高分辨率层序格架下的陆相湖盆精细沉积体系研究:以吐哈盆地西缘侏罗系-古近系为例. 岩性油气藏,2017,29(5):1-10. YANG Z L,XIAO D S,ZHOU L H,et al. Depositional system of lacustrine basins within high-resolution sequence framework:a case of Jurassic to Paleogene in western Turpan-Kumul Basin. Lithologic Reservoirs,2017,29(5):1-10.
[6] 石战战,王元君,唐湘蓉,等.一种基于时频域波形分类的储层预测方法.岩性油气藏,2018,30(4):98-104. SHI Z Z,WANG Y J,TANG X R,et al. Reservoir prediction based on seismic waveform classification in time-frequency domain. Lithologic Reservoirs,2018,30(4):98-104.
[7] 杨希濮,杨小丽,刘钧,等.一体化储层精细分类方法在非均质储层定量表征中的应用.岩性油气藏,2017,29(1):124-129. YANG X P,YANG X L,LIU J,et al. Application of integrated reservoir classification method to the quantitative characterization of heterogeneity reservoir. Lithologic Reservoirs,2017,29(1):124-129.
[8] 孙思敏,彭仕宓.地质统计学反演方法及其在薄层砂体预测中的应用.西安石油大学学报(自然科学版),2007,22(1):41-48. SUN S M,PENG S M. Geostatistical inversion method and its application in the prediction of thin reservoirs. Journal of Xi'an Shiyou University(Natural Science Edition),2007,22(1):41-48.
[9] 盛述超,毕建军,李维,等.关于地震波形指示反演(SMI)方法的研究.内蒙古石油化工,2015,21(17):147-151. SHENG S C,BI J J,LI W,et al. Research on the method of seismic waveform indication simulation inversion(SMI). Inner Mongolia Petrochemical Industry,2015,21(17):147-151.
[10] 潘光超,周家雄,韩光明,等.中深层"甜点"储层地震预测方法探讨:以珠江口盆地西部文昌A凹陷为例. 岩性油气藏, 2016,28(1):94-100. PAN G C,ZHOU J X,HAN G M,et al. Seismic prediction method of "sweet" reservoir in middle-deep zone:a case study from Wenchang A sag,western Pearl River Mouth Basin. Lithologic Reservoirs,2016,28(1):94-100.
[11] 冉令.一种基于地震波形指示的反演方法研究. 中国石油大学胜利学院学报,2016,30(3):3-5. RAN L. A research on inversion method based on seismic waveform instruction. Journal of Shengli College China University of Petroleum,2016,30(3):3-5.
[12] HAAS A,DUBRULE O. Geostatistical inversion:a sequential method for stochastic reservoir modeling constrained by seismic data. First Break,1994,13(12):561-569.
[13] DUBRULE O,THIBAUT M,LAMY P,et al. Geostatistical reservoir characterization constrained by 3D seismic data. Petroleum Science,1998,43(4):121-128.
[14] ROTHMAN D H. Geostatistical inversion of 3 D seismic data for thin-sand delineation. Geophysics,1998,51(2):332-346.
[15] 杜伟维,金兆军,邸永香.地震波形指示反演及特征参数模拟在薄储层预测中的应用. 工程地球物理学报,2017,14(1):56-61. DU W W,JIN Z J,DI Y X. The application of seismic waveform indicator inversion and characteristic parameter simulation to thin reservoir prediction. Chinese Journal of Engineering Geophysics,2017,14(1):56-61.
[16] 张亚斌,瞿亦斌,陈忠云.神经网络技术在测井曲线重构中的应用.石油天然气学报,2011,33(3):89-94. ZHANG Y B,QU Y B,CHEN Z Y. Application of neural network technology in reconstructing logging curves. Journal of Oil and Gas Technology,2011,33(3):89-94.
[17] 刘化清,苏明军,倪长宽,等.薄砂体预测的地震沉积学研究方法.岩性油气藏,2018,30(2):1-11. LIU H Q,SU M J,NI C K,et al. Thin bed prediction from interbeded background:Revised seismic sedimentological method. Lithologic Reservoirs,2018,30(2):1-11.
[18] 杨志力,周路,彭文利,等.BP神经网络技术在声波测井曲线重构中的运用. 西南石油大学学报(自然科学版),2008,30(1):63-66. YANG Z L,ZHOU L,PENG W L,et al. Application of BP neural-network technology in sonic log data rebuilding. Journal of Southwest Petroleum University(Science & Technology Edition), 2008,30(1):63-66.
[19] 张永军,程超,梁涛,等.基于BP神经网络的测井曲线构建. 西部探矿工程,2006,18(2):82-85. ZHANG Y J,CHENG C,LIANG T,et al. Logging curve construction based on BP neural network. West-China Exploration Engineering,2006,18(2):82-85.
[20] 杨涛,乐友喜,吴勇.波形指示反演在储层预测中的应用.地球物理学进展,2018,33(2):769-776. YANG T,YUE Y X,WU Y. Application of the waveform inversion in reservoir prediction. Progress in Geophysics,2018,33(2):769-776.
[21] 梁杰,陈维涛,罗明,等.地震波形指示反演在珠江口盆地A油田薄层预测中的应用.物探化探计算技术,2019,41(3):1-7. LIANG J,CHEN W T,LUO M,et al. Application of seismic motion inversion in thin layer prediction of A oilfield in Pearl River Mouth Basin. Geophysical and Geochemical Exploration Computing Technology,2019,41(3):1-7.
[22] 王贤,唐建华,毕建军,等.地震波形指示反演在石南地区薄储层预测中的应用.新疆石油天然气,2017,13(3):1-5. WANG X,TANG J H,BI J J,et al. Application of seismic waveform inversion in Shinan area. Xinjiang Oil and Gas,2017,13(3):1-5.
[23] 李金磊,陈祖庆,王良军,等.相控技术在低勘探区生屑滩相储层预测中的应用.岩性油气藏,2017,29(3):110-117. LI J L,CHEN Z Q,WANG L J,et al. Application of facies-controlled technique to bioclastic shoal reservoir prediction in less well zones. Lithologic Reservoirs,2017,29(3):110-117.
[24] 彭真明,张启衡,龚奇,等.波阻抗反演中的全局寻优策略.物探化探计算技术,2003,25(2):151-156. PENG Z M,ZHANG Q H,GONG Q,et al. A global optimization strategy for impedance inversion. Geophysical and Geochemical Exploration Computing Technology,2003,25(2):151-156.
[25] 乔中林,杜立筠.约束稀疏脉冲波阻抗正反演参数研究.海洋地质前沿,2016,32(8):52-57. QIAO Z L,DU L J. Research on impedance forward and inversion parameters of constrained spares spike method. Marine Geology Frontier,2016,32(8):52-57.
[1] ZHOU Ziqiang, ZHU Zhengping, PAN Renfang, DONG Yu, JIN Jineng. Simulation and prediction of tight sandstone reservoirs based on waveform facies-controlled inversion:A case study from the second member of Paleogene Kongdian Formation in southern Cangdong sag, Huanghua Depression [J]. Lithologic Reservoirs, 2024, 36(5): 77-86.
[2] XIONG Bo, ZHU Dongxue, FANG Chaohe, WANG Shejiao, DU Guanglin, XUE Yafei, MO Shaoyuan, XIN Fudong. Heat transfer prediction of medium and deep coaxial casing based on BP algorithm [J]. Lithologic Reservoirs, 2024, 36(2): 15-22.
[3] WANG Ya, LIU Zongbin, LU Yan, WANG Yongping, LIU Chao. Flow unit division based on SSOM and its production application: A case study of sublacustrine turbidity channels of middle Es3 in F oilfield,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(2): 160-169.
[4] HE Yanbing, XIAO Zhangbo, ZHENG Yangdi, LIU Junyi, YI Hao, ZHAO Qing, ZHANG Yuexia, HE Yong. Hydrocarbon accumulation characteristics of Mesozoic Lufeng 7-9 buried hill in Lufeng 13 subsag transition zone,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(3): 18-28.
[5] HUANG Junli, ZHANG Wei, LIU Lihui, CAI Guofu, ZENG Youliang, MENG Qingyou, LIU Hao. Ternary seismic configuration interpretation technology of Paleogene Wenchang Formation in Panyu 4 depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(2): 103-112.
[6] HE Yong, QIU Xinwei, LEI Yongchang, XIE Shiwen, XIAO Zhangbo, LI Min. Tectonic evolution and hydrocarbon accumulation characteristics of Cenozoic in eastern Lufeng 13 subsag, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2023, 35(1): 74-82.
[7] ZHANG Weiwei, LIU Jun, LIU Lihui, ZHANG Xiaozhao, BAI Haijun, YANG Dengfeng. Lithology prediction technology and its application of Paleogene Wenchang Formation in Panyu 4 depression,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(6): 118-125.
[8] LI Chengze, CHEN Guojun, TIAN Bing, YUAN Xiaoyu, SUN Rui, SU Long. Water-rock interaction in deep strata under high temperature and high pressure in Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(4): 141-149.
[9] ZHANG Wei, LI Lei, QIU Xinwei, GONG Guangchuan, CHENG Linyan, GAO Yifan, YANG Zhipeng, YANG Lei. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: A case study of Paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2022, 34(3): 131-141.
[10] ZHANG Xiaozhao, WU Jing, PENG Guangrong, XU Xinming, ZHENG Xiaobo. Miocene river-wave dominated sedimentary system in south belt of Enping Sag and its significance [J]. Lithologic Reservoirs, 2022, 34(2): 95-104.
[11] YANG Zhanwei, JIANG Zhenxue, LIANG Zhikai, WU Wei, WANG Junxia, GONG Houjian, LI Weibang, SU Zhanfei, HAO Mianzhu. Evaluation of shale TOC content based on two machine learning methods: A case study of Wufeng-Longmaxi Formation in southern Sichuan Basin [J]. Lithologic Reservoirs, 2022, 34(1): 130-138.
[12] ZHAO Jun, HAN Dong, HE Shenglin, TANG Di, ZHANG Tao. Identification of fluid properties of low contrast reservoir based on water-gas ratio calculation [J]. Lithologic Reservoirs, 2021, 33(4): 128-136.
[13] WU Zhongyuan, ZHANG Xin, ZHANG Chunlei, WANG Haiying. Lithology identification based on LSTM recurrent neural network [J]. Lithologic Reservoirs, 2021, 33(3): 120-128.
[14] XIANG Qiaowei, LI Xiaoping, DING Lin, DU Jiayuan. Formation mechanism and petroleum geological significance of Paleogene sandstone with high natural gamma value in Zhuyi Depression, Pearl River Mouth Basin [J]. Lithologic Reservoirs, 2021, 33(2): 93-103.
[15] CAO Sijia, SUN Zengjiu, DANG Huqiang, CAO Shuai, LIU Dongmin, HU Shaohua. Prediction technology of tight oil thin sand reservoir and its application effect: a case study of Lower Cretaceous Quantou Formation in Aonan block,Songliao Basin [J]. Lithologic Reservoirs, 2021, 33(1): 239-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[2] ZHANG Jie, ZHAO Yuhua. Seismic sequence of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 71 -74 .
[3] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[4] ZHU Xiaoyan, LI Aiqin, DUAN Xiaochen, TIAN Suiliang, LIU Meirong. Fine stratigraphic classification and correlation of Chang 3 reservoir of Yanchang Formation in Zhenbei Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 82 -86 .
[5] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[6] HAN Chunyuan,ZHAO Xianzheng,JIN Fengming,WANG Quan,LI Xianping,WANG Suqing. “Multi-factor controlling, four-factor entrapping and key-factor enrichment”of stratigraphic-lithologic reservoirs and exploration practice in Erlian Basin (Ⅳ)———Exploration practice[J]. Lithologic Reservoirs, 2008, 20(1): 15 -20 .
[7] DAI Chaocheng, ZHENG Rongcai, WEN Huaguo, ZHANG Xiaobing. Sequence-based lithofacies and paleogeography mapping of Paleogene in Lvda area, Liaodongwan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 39 -46 .
[8] YIN Yanshu, ZHANG Shangfeng, YIN Taiju. High resolution sequence stratigraphy framework and the distribution of sandbodies in salt lake of Qianjiang Formation in Zhongshi Oilfield[J]. Lithologic Reservoirs, 2008, 20(1): 53 -58 .
[9] SHI Xuefeng, DU Haifeng. Study on the sedimentary facies of the member 3 and 4+5 of Yanchang Formation in Jiyuan area[J]. Lithologic Reservoirs, 2008, 20(1): 59 -63 .
[10] YAN Shibang, HUWangshui, LI Ruisheng, GUAN Jian, LI Tao, NIE Xiaohong. Structural features of contemporaneous thrust faults in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 64 -68 .
TRENDMD: