Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (3): 120-128.doi: 10.12108/yxyqc.20210312

• EXPLORATION TECHNOLOGY • Previous Articles     Next Articles

Lithology identification based on LSTM recurrent neural network

WU Zhongyuan1, ZHANG Xin2, ZHANG Chunlei3, WANG Haiying1   

  1. 1. School of Science, China University of Geosciences(Beijing), Beijing 100083, China;
    2. School of Statistics, Beijing Normal University, Beijing 100875, China;
    3. Beijing Zhongdirunde Petroleum Technology Co., Ltd., Beijing 100083, China
  • Received:2020-07-22 Revised:2020-09-06 Published:2021-06-03

Abstract: A lithology recognition method by long-short-term memory neural network(LSTM)was proposed for complex carbonate reservoirs with complex composition and diverse lithology,to overcome obstacles troubling traditional identification,and effective results were showed with a case from gas field. Due to the inadequate ability of general machine learning methods in extracting the characteristics of sedimentary sequence,the LSTM method was introduced into the improvement for lithology identification. Taking the Lower Paleozoic carbonate reservoir in eastern block of Sulige gas field as an example,six sensitive parameters were selected to construct a lithology identification model based on LSTM,such as GRPe,DENRLLDAC and CNL. The results show that lithology identification accuracy based on LSTM increases by 1.40%-12.25% above traditional models(Naive Bayes,KNN,Decision Tree,SVM and HMM),and can provide more reliable support for the characterization and evaluation of complex carbonate reservoirs.

Key words: long-short-term memory neural network, lithology identification, carbonate reservoir, machine learning

CLC Number: 

  • P618.13
[1] 袁照威,段正军,张春雨,等.基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释.新疆石油地质,2017,38(1):96-102. YUAN Z W,DUAN Z J,ZHANG C Y,et al. Interpretation of logging lithology in carbonate reservoirs based on Markov Chain probability model. Xinjiang Petroleum Geology,2017,38(1):96-102.
[2] 成大伟,袁选俊,周川闽,等.测井岩性识别方法及应用:以鄂尔多斯盆地中西部长7油层组为例.中国石油勘探,2016,21(5):117-126. CHENG D W,YUAN X J,ZHOU C M,et al. Logging lithology identification methods and their application:A case study on Chang 7 member in central-western Ordos Basin,NW China. China Petroleum Exploration,2016,21(5):117-126.
[3] 王泽华,朱筱敏,孙中春,等.测井资料用于盆地中火成岩岩性识别及岩相划分:以准噶尔盆地为例.地学前缘,2015,22(3):254-268. WANG Z H,ZHU X M,SUN Z C,et al. Igneous lithology identification and lithofacies classification in the basin using logging data:Taking Junggar Basin as an example. Earth Science Frontiers,2015,22(3):254-268.
[4] 马峥,张春雷,高世臣.主成分分析与模糊识别在岩性识别中的应用.岩性油气藏,2017,29(5):127-133. MA Z,ZHANG C L,GAO S C. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs,2017,29(5):127-133.
[5] 王振洲,张春雷,高世臣.利用决策树方法识别复杂碳酸盐岩岩性:以苏里格气田苏东41-33区块为例.油气地质与采收率,2017,24(6):25-33. WANG Z Z,ZHANG C L,GAO S C. Lithology identification of complex carbonate rocks based on decision tree method:An example from block Sudong 41-33 in Sulige gas field. Petroleum Geology and Recovery Efficiency,2017,24(6):25-33.
[6] 孙予舒,黄芸,梁婷,等.基于XGBoost算法的复杂碳酸盐岩岩性测井识别.岩性油气藏,2020,32(4):98-106. SUN Y S,HUANG Y,LIANG T,et al. Identification of complex carbonate lithology by logging based on XGBoost algorithm. Lithologic Reservoirs,2020,32(4):98-106.
[7] AL-ANAZI A,GATES I D. A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology,2010,114(3/4):267-277.
[8] 袁照威,陈龙,高世臣,等.基于马尔科夫-贝叶斯模拟算法的多地震属性沉积相建模方法:以苏里格气田苏10区块为例. 油气地质与采收率,2017,24(3):37-43. YUAN Z W,CHEN L,GAO S C,et al. A method of sedimentary facies modeling through integration of multi-seismic attributes based on Markov-Bayes model:An example from Su10 area in the north of Sulige gas field. Petroleum Geology and Recovery Efficiency,2017,24(3):37-43.
[9] 仲鸿儒,成育红,林孟雄,等.基于SOM和模糊识别的复杂碳酸盐岩岩性识别.岩性油气藏,2019,31(5):84-91. ZHONG H R,CHENG Y H,LIN M X,et al. Lithology identification of complex carbonate based on SOM and fuzzy recognition. Lithologic Reservoirs,2019,31(5):84-91.
[10] 刘跃杰,刘书强,马强,等. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用.岩性油气藏,2019,31(4):101-111. LIU Y J,LIU S Q,MA Q,et al. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin. Lithologic Reservoirs,2019,31(4):101-111.
[11] ELFEKI A,DEKKING M. A Markov Chain model for subsurface characterization:Theory and applications. Mathematical Geology,2001,33(5):569-589.
[12] LINDBERG D V,GRANA D. Petro-elastic log-facies classification using the expectation maximization algorithm and hidden markov models. Math Geosciences,2015,47(6):719-752.
[13] HOCHREITER S,SCHMIDHUBER J. Long short-term memory. Neural Computation,1997,9(8):1735-1780.
[14] 张东晓,陈云天,孟晋.基于循环神经网络的测井曲线生成方法. 石油勘探与开发,2018,45(4):598-607. ZHANG D X,CHEN Y T,MENG J. Synthetic well logs generation via recurrent neural networks. Petroleum Exploration and Development,2018,45(4):598-607.
[15] ZHANG J F,ZHU Y,ZHANG X P,et al. Developing a long short-term memory(LSTM)based model for predicting water table depth in agricultural areas. Journal of Hydrology,2018,6(561):918-929.
[16] BAO W,YUE J L,RAO Y L. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. Plos One,2017,12(7):e0180944.
[17] SCHUSTER M,PALIWAL K K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[18] BENGIO Y,SIMARD P,FRASCONI P. Learning long-term dependencies with Gradient Descent is difficult. IEEE Trans Neural Network,2002,5(2):157-166.
[19] GRAVES A,JAITLY N,Mohamed A R. Hybrid speech recognition with deep bidirectional LSTM. Automatic Speech Recognition and Understanding(ASRU),2013 IEEE Workshop on. IEEE,2013.
[20] 罗群,吴安彬,王井伶,等.中国北方页岩气成因类型、成气模式与勘探方向.岩性油气藏,2019,31(1):1-11. LUO Q,WU A B,WANG J L,et al. Genetic types,generation models,and exploration direction of shale gas in northern China. Lithologic Reservoirs,2019,31(1):1-11.
[21] 靳军,王剑,杨召,等. 准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别.岩性油气藏,2018,30(2):85-92. JIN J,WANG J,YANG Z,et al. Welling logging identification of Carboniferous volcanic inner buried-hill reservoirs in Ke-Bai fault zone in Junggar Basin. Lithologic Reservoirs,2018,30(2):85-92.
[1] SUN Liang, LI Baozhu, LIU Fan. Efficient management of water flooding reservoirs based on Pollock streamline tracing [J]. Lithologic Reservoirs, 2021, 33(3): 169-176.
[2] YANG Meihua, ZHONG Haiquan, LI Yingchuan. New production index curve of fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2021, 33(2): 163-170.
[3] LI Shubo, GUO Xuguang, ZHENG Menglin, WANG Zesheng, LIU Xinlong. Lithology identification of Carboniferous volcanic rocks in Xiquan area, eastern Junggar Basin [J]. Lithologic Reservoirs, 2021, 33(1): 258-266.
[4] SUN Yushu, HUANG Yun, LIANG Ting, JI Hancheng, XIANG Pengfei, XU Xinrong. Identification of complex carbonate lithology by logging based on XGBoost algorithm [J]. Lithologic Reservoirs, 2020, 32(4): 98-106.
[5] CHEN Mingjiang, CHENG Liang, LU Tao. Pore structure characterization and its impact on waterflooding development in Khasib reservoir in Ahdeb Oilfield,Iraq [J]. Lithologic Reservoirs, 2020, 32(3): 133-143.
[6] QIAN Zhen, LI Hui, QIAO Lin, BAI Sen. Experiment on the mechanism of low salinity waterflooding in carbonate reservoir [J]. Lithologic Reservoirs, 2020, 32(3): 159-165.
[7] SONG Xuanyi, LIU Yuetian, MA Jing, WANG Junqiang, KONG Xiangming, REN Xingnan. Productivity forecast based on support vector machine optimized by grey wolf optimizer [J]. Lithologic Reservoirs, 2020, 32(2): 134-140.
[8] LUO Zhifeng, HUANG Jingyun, HE Tianshu, HAN Mingzhe, ZHANG Jintao. Extending regularity of fracture height by acid fracturing in carbonate reservoir: a case study of Qixia Formation in western Sichuan [J]. Lithologic Reservoirs, 2020, 32(2): 169-176.
[9] SHI Wenyang, YAO Yuedong, CHENG Shiqing, GU Shaohua, SHI Zhiliang. Pressure transient analysis for separate-layer acid fracturing well of tidal flat fractured carbonate reservoirs in western Sichuan Basin [J]. Lithologic Reservoirs, 2020, 32(1): 152-160.
[10] REN Wenbo. Application of flow potential control in water control and oil stabilization of fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2019, 31(6): 127-134.
[11] SUN Liang, LI Yong, YANG Jing, LI Baozhu. Water-cut rising patterns and optimal water injection techniques of horizontal wells in thin carbonate reservoir with bottom water [J]. Lithologic Reservoirs, 2019, 31(6): 135-144.
[12] ZHONG Hongru, CHENG Yuhong, LIN Mengxiong, GAO Shichen, ZHONG Tingting. Lithology identification of complex carbonate based on SOM and fuzzy recognition [J]. Lithologic Reservoirs, 2019, 31(5): 84-91.
[13] DAI Dongdong, FANG Qifei, WAN Xiaoguo, CAI Quan. Identification of Ordovician karstic paleochannels and its accumulation significance in Halahatang area [J]. Lithologic Reservoirs, 2017, 29(5): 89-96.
[14] MAZheng, ZHANG Chunlei, GAO Shichen. Lithology identification based on principal component analysis and fuzzy recognition [J]. Lithologic Reservoirs, 2017, 29(5): 127-133.
[15] Wu Zhaohui,Xu Shouyu,Liu Xilei,Wu Yinghao,Song Honglin,Niu Lijuan. Quantitative lithology identification technology of complex sand-conglomerate bodies#br# [J]. Lithologic Reservoirs, 2016, 28(2): 114-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Xiongqi,CHEN Dongxia, ZHANG Jun. Concept and categorize of subtle reservoir and problems in its application[J]. Lithologic Reservoirs, 2007, 19(1): 1 -8 .
[2] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[3] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[4] LEI Bianjun, ZHANG Ji,WANG Caili,WANG Xiaorong, LI Shilin, LIU Bin. Control of high r esolution sequence str atigr aphy on microfacies and reservoir s: A case from the upper Ma 5 member in Tong 5 wellblock, Jingbian Gas Field[J]. Lithologic Reservoirs, 2008, 20(1): 1 -7 .
[5] YANG Jie,WEI Pingsheng, LI Xiangbo. Basic concept, content and research method of petroleum seismogeology[J]. Lithologic Reservoirs, 2010, 22(1): 1 -6 .
[6] KUANG Hongwei, GAO Zhenzhong, WANG Zhengyun, WANG Xiaoguang. A type of specific subtle reservoir : Analysis on the origin of diagenetic trapped reservoirs and its significance for exploration in Xia 9 wellblock of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 8 -14 .
[7] DAI Liming, LI Jianping, ZHOU Xinhuai, CUI Zhongguo, CHENG Jianchun. Depositional system of the Neogene shallow water delta in Bohai Sea area[J]. Lithologic Reservoirs, 2007, 19(4): 75 -81 .
[8] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[9] DUAN Youxiang, CAO Jing, SUN Qifeng. Application of auto-adaptive dip-steering technique to fault recognition[J]. Lithologic Reservoirs, 2017, 29(4): 101 -107 .
[10] ZHANG Hui, GUAN Da, XIANG Xuemei, CHEN Yong. Prediction for fractured tight sandstone reservoir of Xu 4 member in eastern Yuanba area,northeastern Sichuan Basin[J]. Lithologic Reservoirs, 2018, 30(1): 133 -139 .
TRENDMD: