Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (6): 117-126.doi: 10.12108/yxyqc.20230613

• PETROLEUM EXPLORATION • Previous Articles     Next Articles

Determination of effective permeability of granitic buried-hill fractured reservoirs in Bongor Basin,Chad

GUO Haifeng1, XIAO Kunye2, CHENG Xiaodong1, DU Yebo2, DU Xudong1, NI Guohui1, LI Xianbing2, JI Ran1   

  1. 1. International Branch, China National Logging Corporation, Beijing 102206, China;
    2. Research Institute of Science and Technology Co., Ltd., CNPC, Beijing 100083, China
  • Received:2023-04-17 Revised:2023-06-27 Online:2023-11-01 Published:2023-11-07

Abstract: A new effective permeability calculation method was proposed for the granitic buried-hill reservoirs in Bongor Basin of Chad based on drilling,logging,and oil testing data. Apparent effective permeability was derived from well testing results,serving as labeled data for the sample dataset. The method relies primarily on domain knowledge and mechanism-driven models,and is supplemented by machine learning to establish feature logs. The dual-prediction model XGBoost+KNN was employed to calculate apparent effective permeability,with SHAP values used for model interpretability analysis. The results show that:(1)Permeability indicator logs,namely apparent acoustic impedance and porosity,were utilized to select 26 effective testing intervals from19 wells,based on their intersection with production index. The well testing results were converted into apparent permeability values,ranging from 0.01 to 1 601.50 m D,resulting in a dataset comprising 51 348 depth data points and 14 input logs. The sample dataset adequately covers the main buried hill zones and incorporates input log response characteristics from diverse lithologies,reservoir qualities,and well testing production performance,thus achieving sufficient representativeness.(2)The XGBoost model effectively uses various logs,inclu-ding the apparent acoustic impedance log,normalized depth log representing the vertical zoning characteristics of buried-hill reservoirs,density log,window average of natural gamma ray log,acoustic log,neutron log,window average of neutron-density porosity difference log,deep and shallow resistivity log,and window standard deviation of natural gamma ray log. The model’s predictions exhibit consistency with qualitative understanding of buried-hill reservoir quality and demonstrate higher accuracy compared to the KNN model.(3)The granitic buried-hill reservoirs of Bongor Basin,Chad,with effective permeability greater than 1.00 m D,are classified as effective reservoirs,while those exceeding 50.00 mD are considered good reservoirs. The calculated results using the proposed method are consistent with the well testing results.

Key words: granitic buried hill, fractured reservoir, apparent effective permeability, machine learning, sample dataset building, XGBoost, reservoir parameter modeling, Bongor Basin

CLC Number: 

  • TE122
[1] 王楠.乍得Bongor盆地潜山岩性识别及储层测井综合评价[J].科学技术与工程,2019,19(27):66-73.WANG Nan. Lithology identification and well-logging comprehensive evaluation of basement reservoir in Bongor Basin,Chad[J]. Science Technology and Engineering,2019,19(27):66-73.
[2] 汪文湛,文光耀,程维营,等. Bongor盆地花岗岩潜山流体性质识别[J].石化技术,2019,26(6):138-141.WANG Wenzhan,WEN Guangyao,CHENG Weiying,et al.Identification of granitic buried-hill reservoir fluid properties in Bongor Basin[J]. Petrochemical Industry Technology,2019,26(6):138-141.
[3] 孙建孟,闫国亮.渗透率模型研究进展[J].测井技术,2012,36(4):329-335.SUN Jianmeng,YAN Guoliang. Review on absolute permeability model[J]. Well Logging Technology,2012,36(4):329-335.
[4] 任杰.碳酸盐岩裂缝性储层常规测井评价方法[J].岩性油气藏,2020,32(6):129-137.REN Jie. Conventional logging evaluation method for carbonate fractured reservoir[J]. Lithologic Reservoirs,2020,32(6):129-137.
[5] 吴伟,邵广辉,桂鹏飞,等.基于电成像资料的裂缝有效性评价和储集层品质分类:以鸭儿峡油田白垩系为例[J].岩性油气藏,2019,31(6):102-108.WU Wei,SHAO Guanghui,GUI Pengfei,et al. Fracture effectiveness evaluation and reservoir quality classification based on electrical imaging data:A case study of Cretaceous in Ya’erxia Oilfield[J]. Lithologic Reservoirs,2019,31(6):102-108.
[6] 严伟,张冲,胡挺,等.利用斯通利波估算火成岩地层渗透率[J].岩性油气藏,2013,25(1):107-110.YAN Wei,ZHANG Chong,HU Ting,et al. Calculation of permeability in igneous rock formation based on Stoneley wave[J]. Lithologic Reservoirs,2013,25(1):107-110.
[7] 李宁,徐彬森,武宏亮,等.人工智能在测井地层评价中的应用现状及前景[J].石油学报,2021,42(4):508-522.LI Ning,XU Binsen,WU Hongliang,et al. Application status and prospects of artificial intelligence in well logging and formation evaluation[J]. Acta Petrolei Sinica,2021,42(4):508-522.
[8] 匡立春,刘合,任义丽,等.人工智能在石油勘探开发领域的应用现状与发展趋势[J].石油勘探与开发,2021,48(1):1-11.KUANG Lichun,LIU He,REN Yili,et al. Application and development trend of artificial intelligence in petroleum exploration and development[J]. Petroleum Exploration and Development,2021,48(1):1-11.
[9] 王华,张雨顺.测井资料人工智能处理解释的现状及展望[J].测井技术,2021,45(4):345-356.WANG Hua,ZHANG Yushun. Research status and prospect of artificial intelligence in logging data processing and interpretation[J]. Well Logging Technology,2021,45(4):345-356.
[10] 孙予舒,黄芸,梁婷,等.基于XGBoost算法的复杂碳酸盐岩岩性测井识别[J].岩性油气藏,2020,32(4):98-106.SUN Yushu,HUANG Yun,LIANG Ting,et al. Identification of complex carbonate lithology by logging based on XGBoost algorithm[J]. Lithologic Reservoirs,2020,32(4):98-106.
[11] 武中原,张欣,张春雷,等.基于LSTM循环神经网络的岩性识别方法[J].岩性油气藏,2021,33(3):120-128.WU Zhongyuan,ZHANG Xin,ZHANG Chunlei,et al. Lithology identification based on LTSM recurrent neural network[J]. Lithologic Reservoirs,2021,33(3):120-128.
[12] 窦立荣,魏小东,王景春,等.乍得Bongor盆地花岗质基岩潜山储层特征[J].石油学报,2015,36(8):897-904.DOU Lirong,WEI Xiaodong,WANG Jingchun,et al. Characteristics of granitic basement rock buried hill reservoir in Bongor Basin,Chad[J]. Acta Petrolei Sinica,2015,36(8):897-904.
[13] 余朝华,杜业波,肖坤叶,等.乍得Bongor盆地基岩潜山储层特征与影响因素研究[J].岩石学报,2019,35(4):1279-1290.YU Zhaohua,DU Yebo,XIAO Kunye,et al. Characteristics and influence factors of basement buried-hill reservoir in Bongor Basin,Chad[J]. Acta Petrologica Sinica,2019,35(4):1279-1290.
[14] SINGH A,THAKUR N,SHARMA A. A review of supervised machine learning algorithms[R]. New Delhi,India:2016 The3rd International Conference on Computing for Sustainable Global Development(INDIACom),2016.
[15] 刘能强.实用现代试井解释方法[M].5版.北京:石油工业出版社,2008:29-31.LIU Nengqiang. The utility of modern well test interpretation method[M]. 5th ed. Beijing:Petroleum Industry Press,2008:29-31.
[16] 肖立志.机器学习数据驱动与机理模型融合及可解释性问题[J].石油物探,2022,61(2):205-212.XIAO Lizhi. The fusion of data-driven machine learning with mechanism models and interpretability issues[J]. Geophysical Prospecting for Petroleum,2022,61(2):205-212.
[17] LIANG Lin,LEI Ting. Machine learning-enabled automatic sonic shear processing[J]. Petrophysics,2021,62(3):282-295.
[18] LI Hongqi,GUO Haifeng,GUO Haimin,et al. Data mining techniques for complex formation evaluation in petroleum exploration and production:A comparison of feature selection and classification methods[R]. Wuhan,China:2008 IEEE PacificAsia Workshop on Computational Intelligence and Industrial Application,2008.
[19] ZHENG A,CASARI A. Feature engineering for machine learning:Principles and techniques for data scientists[M]. Sebastopol,California:O’Reilly Media,Inc.,2018.
[20] Aspen Tech. Aspen Geolog[EB/OL].[2023-07-20]. https://www.aspentech.com/en/products/sse/aspen-geolog.
[21] YE Shinju,RABILLER P. A new tool for electro-facies analysis:Multi-resolution graph-based clustering[R]. Dallas,Texas,USA:SPWLA 41st Annual Logging Symposium,2000.
[22] GRINSZTAJN L,OYALLON E,VAROQUAUX G. Why do tree-based models still outperform deep learning on tabular data?[DB/OL].(2022-07-18)[2023-07-20]. https://arxiv.org/abs/2207.08815.
[23] SHWARTZ-ZIV R,ARMON A. Tabular data:Deep learning is not all you need[J]. Information Fusion,2022,81:84-90.
[24] GORISHNIY Y,RUBACHEV I,KHRULKOV V,et al. Revisiting deep learning models for tabular data[DB/OL].(2021-11-10)[2023-07-20]. https://arxiv.org/abs/2106.11959.
[25] FIX E,HODGES J L. Discriminatory analysis—Nonparametric discrimination:Consistency properties[J]. International Statistical Review/Revue Internationale de Statistique,1989,57(3):238-247.
[26] CORTES C,VAPNIK V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
[27] KE Guolin,MENG Qi,FINLEY T,et al. LightGBM:A highly efficient gradient boosting decision tree[M]//GUYON I,VON L U,BENGIO S,et al. 31st Advances in neural information processing systems 30(NIPS 2017). Massachusetts,USA:MIT Press,2017.
[28] CHEN Tianqi,GUESTRIN C. XGBoost:A scalable tree boosting system[C]//KRISHNAPURAM B,SHAH M,SMOLA A,et al. Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining. New York:Association for Computing Machinery,2016.
[29] Microsoft Corporation. Parameters tuning—Light GBM 4.0.0.99documentation. html[EB/OL].[2023-07-20]. https://lightgbm.readthedocs.io/en/latest/Parameters-Tuning.html.
[30] SNOEK J,LAROCHELLE H,ADAMS R P. Practical bayesian optimization of machine learning algorithms[DB/OL].(2012-08-29)[2023-07-20]. https://arxiv.org/abs/1206.2944.
[31] PEDREGOSA F,VAROQUAUX G,GRAMFORT A,et al.Scikit-Learn:Machine learning in python[J]. Journal of Machine Learning Research,2011,12(85):2825-2830.
[32] HEAD T,KUMAR M,NAHRSTAEDT H,et al. Scikit-optimize/scikit-optimize[DB/OL].(2022-04-12)[2023-07-20]. https://zenodo.org/record/6451894.
[33] WANG Chi,WU Qingyun,WEIMER M,et al. FLAML:A fast and lightweight Auto ML library[DB/OL].(2021-05-19)[2023-07-20]. https://arxiv.org/abs/1911.04706.
[34] LUNDBERG S M,LEE S I. A unified approach to interpreting model predictions[C]//Advances in Neural Information Processing Systems 30(NIPS 2017). Long Beach,California,USA:Neural Information Processing Systems Foundation,Inc.(NeurIPS),2018.
[35] LUNDBERG S M,ERION G,CHEN H,et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence,2020,2(1):56-67.
[1] GUI Jinyong, LI Shengjun, GAO Jianhu, LIU Bingyang, GUO Xin. A random forests prediction method for gas saturation based on feature variable extension [J]. Lithologic Reservoirs, 2024, 36(2): 65-75.
[2] YANG Wuyang, WEI Xinjian, LI Haishan. The past,present and future of intelligent geophysical technology [J]. Lithologic Reservoirs, 2024, 36(2): 170-188.
[3] TANG Yuzhe, CHAI Hui, WANG Hongjun, ZHANG Liangjie, CHEN Pengyu, ZHANG Wenqi, JIANG Lingzhi, PAN Xingming. Characteristics and new prediction methods of Jurassic subsalt carbonate reservoirs in the eastern right bank of Amu Darya,Central Asia [J]. Lithologic Reservoirs, 2023, 35(6): 147-158.
[4] XU Xin, YANG Wuyang, ZHANG Kai, WEI Xinjian, ZHANG Xiangyang, LI Haishan. Optimization of 3D first-arrival traveltime tomography inversion [J]. Lithologic Reservoirs, 2023, 35(4): 79-89.
[5] LI Mengying, ZHU Rukai, HU Suyun. Geological characteristics and resource potential of overseas terrestrial shale oil [J]. Lithologic Reservoirs, 2022, 34(1): 163-174.
[6] WU Zhongyuan, ZHANG Xin, ZHANG Chunlei, WANG Haiying. Lithology identification based on LSTM recurrent neural network [J]. Lithologic Reservoirs, 2021, 33(3): 120-128.
[7] SUN Yushu, HUANG Yun, LIANG Ting, JI Hancheng, XIANG Pengfei, XU Xinrong. Identification of complex carbonate lithology by logging based on XGBoost algorithm [J]. Lithologic Reservoirs, 2020, 32(4): 98-106.
[8] SONG Xuanyi, LIU Yuetian, MA Jing, WANG Junqiang, KONG Xiangming, REN Xingnan. Productivity forecast based on support vector machine optimized by grey wolf optimizer [J]. Lithologic Reservoirs, 2020, 32(2): 134-140.
[9] LIU Guizhen, ZHANG Deshi, LI Nengwu. Characteristics of basement reservoirs and hydrocarbon accumulation conditions in the northern Kunlun fault zone [J]. Lithologic Reservoirs, 2015, 27(2): 62-69.
[10] HE Long, ZHENG Rongcai, L IANG Xiwen, X U Wenli. Controlling factors and development periods of fracture of Da’anzhai member in Fuling area, eastern Sichuan Basin [J]. Lithologic Reservoirs, 2014, 26(4): 88-96.
[11] WANG Hui, HU Guangyi. Realization and optimization of discrete fracture network model of buried hill fractured reservoir in C oilfield, Bohai Bay [J]. Lithologic Reservoirs, 2012, 24(1): 74-79.
[12] XIAN Wei, WU Weihang, LI Xiaogang, XIA Ming. Application of dual laterolog interpretation of fracture parameters in Ar an Field, Iran [J]. Lithologic Reservoirs, 2008, 20(3): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WEI Qinlian, ZHENG Rongcai, XIAO Ling,WANG Chengyu, NIU Xiaobing. Influencing factors and characteristics of Chang 6 reservoir in Wuqi area, Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 45 -50 .
[2] WANG Dongqi, YIN Daiyin. Empirical formulas of relative permeability curve of water drive reservoirs[J]. Lithologic Reservoirs, 2017, 29(3): 159 -164 .
[3] LI Yun, SHI Zhiqiang. Study on fluid inclusion of tight sandstone reservoir of Upper Triassic Xujiahe Formation in central Sichuan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 27 -32 .
[4] JIANG Ren, FAN Tailiang, XU Shouli. Concept and techniques of seismic geomorphology[J]. Lithologic Reservoirs, 2008, 20(1): 33 -38 .
[5] ZOU Mingliang, HUANG Sijing, HU Zuowei, FENG Wenli, LIU Haoniannian. The origin of carbonate cements and the influence on reservoir quality of Pinghu Formation in Xihu Sag, East China Sea[J]. Lithologic Reservoirs, 2008, 20(1): 47 -52 .
[6] WANG Bingjie, HE Sheng, NI June, FANG Du. Activity analysis of main faults in Qianquan area, Banqiao Sag[J]. Lithologic Reservoirs, 2008, 20(1): 75 -82 .
[7] CHEN Zhenbiao, ZHANG Chaomo, ZHANG Zhansong, LING Husong, SUN Baodian. Using NMR T2 spectrum distribution to study fractal nature of pore structure[J]. Lithologic Reservoirs, 2008, 20(1): 105 -110 .
[8] ZHANG Houfu, XU Zhaohui. Discussion on stratigraphic-lithologic reservoirs exploration in the aspect of the research history of reservoirs[J]. Lithologic Reservoirs, 2008, 20(1): 114 -123 .
[9] ZHANG Xia. Cultivation of exploration creativity[J]. Lithologic Reservoirs, 2007, 19(1): 16 -20 .
[10] YANG Wuyang, YANG Wencai, LIU Quanxin, WANG Xiwen. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1): 86 -91 .
TRENDMD: