Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (2): 134-140.doi: 10.12108/yxyqc.20200215

Previous Articles     Next Articles

Productivity forecast based on support vector machine optimized by grey wolf optimizer

SONG Xuanyi, LIU Yuetian, MA Jing, WANG Junqiang, KONG Xiangming, REN Xingnan   

  1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
  • Received:2019-06-18 Revised:2019-08-16 Online:2020-03-21 Published:2020-01-19

Abstract: Conventional linear regression and empirical formulas for predicting initial productivity have limited application scope and large prediction error, and are difficult to characterize the nonlinear variation of initial production under the influence of multiple factors. Therefore,machine learning algorithm was introduced to improve the accuracy of the prediction. Taking an ultra-low permeability oilfield as an example, ten factors affecting the initial productivity were selected from three aspects of geology, development,and engineering,and the linear correlation among these factors was analyzed by Pearson correlation. Random Forests was applied to identify the main controlling factors of initial productivity. Support vector machine(SVM)optimized by grey wolf optimizer(GWO)was used to establish the prediction model of initial productivity of oil well for the first time. The results show that the main controlling factors of initial productivity in ultra-low permeability oilfields are sand volume of the fracturing,perforation thickness, initial water saturation, effective oil layer thickness and sand intensity of fracturing. The GWO-SVM model has faster operation speed and higher accuracy compared with multivaluable linear regression and SVM optimized by grid searching. The research results can provide reference for the initial productivity evaluation of oil wells.

Key words: machine learning, Random Forest, grey wolf optimizer, support vector machine, productivity forecast

CLC Number: 

  • P631.4
[1] 刘海龙, 刘传喜, 孙建芳, 等.致密砂岩油藏部分射开压裂直井产能分析.辽宁石油化工大学学报, 2018, 38(1):37-43. LIU H L, LIU C X, SUN J F, et al. The productivity analysis of vertical well with partial penetration fracture in tight sandstone reservoir. Journal of Liaoning Shihua University, 2018, 38(1):37-43.
[2] 陈明强, 蒲春生, 赵继勇, 等.变形介质低渗透油藏油井真实产能计算与分析.西安石油大学学报(自然科学版), 2006, 21(2):18-22. CHEN M Q, PU C S, ZHAO J Y, et al. Calculation and analysis of the true productivity of a well of low permeable reservoirs of a deformation medium. Journal of Xi'an Shiyou University(Natural Science Edition).2006, 21(2):18-22.
[3] 任俊杰, 郭平, 汪周华, 等.非线性渗流条件的低渗油藏产能计算方法. 西安石油大学学报(自然科学版), 2013, 28(1):57-60. REN J J, GUO P, WANG Z H, et al. A new method for productivity evaluation of low permeability reservoirs with nonlinear seepage characteristics. Journal of Xi'an Shiyou University (Natural Science Edition), 2013, 28(1):57-60.
[4] 姬靖皓, 席家辉, 曾凤凰, 等.致密油藏分段多簇压裂水平井非稳态产能模型.岩性油气藏, 2019, 31(4):157-164. JI J H, XI J H, ZENG F H, et al. Unsteady productivity model of segmented multi-cluster fractured horizontal wells in tight oil reservoir. Lithologic Reservoirs, 2019, 31(4):157-164.
[5] 李小龙, 许华儒, 刘晓强, 等.径向井压裂裂缝形态及热采产能研究.岩性油气藏, 2017, 29(6):154-160. LI X L, XU H R, LIU X Q, et al. Fracture morphology and production performance of radial well fracturing. Lithologic Reservoirs, 2017, 29(6) 154-160.
[6] 安永生.复杂井产能动态预测数值模拟研究.北京:中国石油大学(北京), 2008. AN Y S. Numerical simulation study on dynamic prediction of complex well productivity. Beijing:China University of Petroleum(Beijing), 2008.
[7] CAO Q, BANERJEE R, GUPTA S, et al. Data driven production forecasting using machine learning. SPE180984, 2016.
[8] 潘有军, 荆文波, 徐赢, 等.火山岩油藏水平井体积压裂产能预测研究.岩性油气藏, 2018, 30(3):159-164. PAN Y J, JING W B, XU Y, et al. Productivity prediction of horizontal wells by volume fracturing in volcanic reservoirs. Lithologic Reservoirs, 2018, 30(3):159-164.
[9] 田冷, 何顺利, 顾岱鸿, 等.改进BP神经网络模型在长庆气田产能预测中的应用.石油天然气学报, 2008, 30(5):106-109. TIAN L, HE S L, GU D H, et al. Application of neural network technique for productivity evaluation in Changqing gas field. Journal of Oil and Gas Technology, 2008, 30(5):106-109.
[10] 王威.致密油藏水平井体积压裂初期产能预测.新疆石油地质, 2016, 37(5):575-579. WANG W. Forecast of initial horizontal well productivity in tight reservoirs by volumetric fracturing process. Xinjiang Petroleum Geology, 2016, 37(5):575-579.
[11] 赵传峰, 姜汉桥, 郭新华.支持向量机在小样本预测中的应用. 油气地面工程, 2009, 28(2):21-23. ZHAO C F, JIANG H Q, GUO X H. Application of support vector machine in small sample prediction. Oil and gas ground engineering, 2009, 28(2):21-23.
[12] 张志英, 姜汉桥, 郭虎, 等.基于支持向量机的水平井产能预测方法.大庆石油地质与开发, 2010, 29(1):78-80. ZHANG Z Y, JIANG H Q, GUO H, et al. Horizontal well productivity prediction based on SVM. Petroleum Geology and Oilfield Development in Daqing, 2010, 29(1):78-80.
[13] BIAN X Q, HUANG J H, WANG Y, et al. Prediction of wax disappearance temperature by intelligent models. Energy & Fuels, 2019, 33(4):2934-2949.
[14] 王建.多元回归法在特低渗透油藏初期产量预测中的应用:以坪北油田为例.江汉石油科技, 2017(4):32-39. WANG J. Application of multiple regression method in early production prediction of ultra-low permeability reservoir. Jianghan Petroleum Technology, 2017(4):32-39.
[15] 翁永春, 祝一帆, 孟浪, 等. 基于多历史覆冰过程的输电线路覆冰增长预测. 三峡大学学报(自然科学版), 2019, 41(1):75-79. WENG Y C, ZHU Y F, MENG L, et al. Prediction of icing growth of transmission line based on multi-history icing process. Journal of China Three Gorges University(Natural Science Edition), 2019, 41(1):75-79.
[16] 姚登举, 杨静, 詹晓娟.基于随机森林的特征选择算法.吉林大学学报(工学版), 2014, 44(1):137-141. YAO D J, YANG J, ZHAN X J. Feature selection algorithm based on random forest. Journal of Jilin University(Engineering and Technology Edition), 2014, 44(1):137-141.
[17] VAPNIK V, LEVIN E, CUN Y L. Measuring the VC-Dimension of a learning machine. Neural Computation, 1994, 6(5):851-876.
[18] 郭振洲, 刘然, 拱长青, 等.基于灰狼算法的改进研究.计算机应用研究, 2017, 34(12):89-92. GUO Z Z, LIU R, GONG C Q, et al. Study on improvement of gray wolf algorithm. Application Research of Computers, 2017, 34(12):89-92.
[19] HELALEH, A H, ALIZADEH M. Performance prediction model of Miscible Surfactant-CO2 displacement in porous media using support vector machine regression with parameters selected by Ant colony optimization. Journal of Natural Gas Science and Engineering, 2016, 30(1):388-404.
[20] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer. Advances in Engineering Software, 2014, 69(3):46-61.
[1] WU Zhongyuan, ZHANG Xin, ZHANG Chunlei, WANG Haiying. Lithology identification based on LSTM recurrent neural network [J]. Lithologic Reservoirs, 2021, 33(3): 120-128.
[2] SUN Yushu, HUANG Yun, LIANG Ting, JI Hancheng, XIANG Pengfei, XU Xinrong. Identification of complex carbonate lithology by logging based on XGBoost algorithm [J]. Lithologic Reservoirs, 2020, 32(4): 98-106.
[3] HE Jian, WU Gang, NIE Wenliang, LIU Songming, HUANG Wei. Fracture classification method based on proximal support vector machine [J]. Lithologic Reservoirs, 2020, 32(2): 115-121.
[4] CHEN Mingqiang, WANG Ning, ZHANG Yang, REN Long. Productivity prediction method of shallow reservoir inWeibei Oilfield [J]. Lithologic Reservoirs, 2017, 29(5): 134-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Qiulian, LI Aiqin, SUN Yanni, CUI Panfeng. Classification method for extra-low permeability reservoirs[J]. Lithologic Reservoirs, 2007, 19(4): 51 -56 .
[2] ZHANG Jie, ZHAO Yuhua. Seismic sequence of Triassic Yanchang Formation in Ordos Basin[J]. Lithologic Reservoirs, 2007, 19(4): 71 -74 .
[3] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[4] ZHU Xiaoyan, LI Aiqin, DUAN Xiaochen, TIAN Suiliang, LIU Meirong. Fine stratigraphic classification and correlation of Chang 3 reservoir of Yanchang Formation in Zhenbei Oilfield[J]. Lithologic Reservoirs, 2007, 19(4): 82 -86 .
[5] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[6] HAN Chunyuan,ZHAO Xianzheng,JIN Fengming,WANG Quan,LI Xianping,WANG Suqing. “Multi-factor controlling, four-factor entrapping and key-factor enrichment”of stratigraphic-lithologic reservoirs and exploration practice in Erlian Basin (Ⅳ)———Exploration practice[J]. Lithologic Reservoirs, 2008, 20(1): 15 -20 .
[7] DAI Chaocheng, ZHENG Rongcai, WEN Huaguo, ZHANG Xiaobing. Sequence-based lithofacies and paleogeography mapping of Paleogene in Lvda area, Liaodongwan Basin[J]. Lithologic Reservoirs, 2008, 20(1): 39 -46 .
[8] YIN Yanshu, ZHANG Shangfeng, YIN Taiju. High resolution sequence stratigraphy framework and the distribution of sandbodies in salt lake of Qianjiang Formation in Zhongshi Oilfield[J]. Lithologic Reservoirs, 2008, 20(1): 53 -58 .
[9] SHI Xuefeng, DU Haifeng. Study on the sedimentary facies of the member 3 and 4+5 of Yanchang Formation in Jiyuan area[J]. Lithologic Reservoirs, 2008, 20(1): 59 -63 .
[10] YAN Shibang, HUWangshui, LI Ruisheng, GUAN Jian, LI Tao, NIE Xiaohong. Structural features of contemporaneous thrust faults in Hongche fault belt of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(1): 64 -68 .
TRENDMD: