Lithologic Reservoirs ›› 2023, Vol. 35 ›› Issue (4): 79-89.doi: 10.12108/yxyqc.20230408

• PETROLEUM EXPLORATION • Previous Articles    

Optimization of 3D first-arrival traveltime tomography inversion

XU Xin1,2, YANG Wuyang1,2, ZHANG Kai3, WEI Xinjian1,2, ZHANG Xiangyang1,2, LI Haishan1,2   

  1. 1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China;
    2. Key Laboratory of Internet of Things, CNPC, Lanzhou 730020, China;
    3. School of Earth Science and Technology, China University of Petroleum(East China), Qingdao 266000, Shandong, China
  • Received:2022-06-27 Revised:2022-08-30 Published:2023-07-01

Abstract: The 3D first-arrival traveltime tomography inversion was optimized by picking up the first-arrival wave using machine learning,establishing the initial velocity constrained by micro logs,obtaining the global traveltime by multi-stencils fast marching method and narrow-band continuation algorithm,gaining the ray propagation path by ray tracing technology,and restricting the target inversion equation by apparent slowness and regularization. The results show that: (1)The machine learning based on image segmentation was used to divide the seismic records into three categories,including the early,the later and the narrow band of first arrival. The classification was weighted to pick up 576 000 channels of seismic data. The accuracy of picking up was greater than 99%,and the efficiency of picking up was more than 80 times higher than that of manual pick up.(2)Using the multi-stencils fast marching method which includes six difference templates can cover the traveltime calculation of 26 nodes around the grid,which can improve the traveltime calculation accuracy of grid diagonal direction. The 3D narrowband extension technique could be used to calculate the forward traveltime of global grid nodes. The 3D ray tracing technique based on Runge-Kutta algorithm could obtain the ray path.(3)Using micro logs information to construct the initial velocity and using apparent slowness information and regularization technology to constrain the tomography inversion equation can effectively improve the accuracy of velocity inversion within 1 000 m underground.(4)The optimized tomography inversion technology has been used to process the actual seismic data of Fusha 4 wiring bundle and Yingmai block in Tarim Oilfield,which could eliminate the “bull's eye” illusion and boundary artifact. The velocity curve of well point is highly consistent with the actual logs data.

Key words: first-arrival traveltime, tomography inversion, first break picking, machine learning, micro-logging constraints, regularization constraints, apparent slowness constraints

CLC Number: 

  • TE319+.2
[1] 吴杰,苏勤,王建华.层析静校正技术在柴北缘地区的应用[J].岩性油气藏, 2008, 20(3):79-82. WU Jie, SU Qin, WANG Jianhua. Application of tomographic static correction in northern margin of Qaidam Basin[J]. Lithologic Reservoirs, 2008, 20(3):79-82.
[2] 杨晨莹,刘沛然,彭仁艳.龙门山前带多信息约束层析静校正技术研究[J].石油物探, 2021, 60(增刊1):102-109. YANG Chenying, LIU Peiran, PENG Renyan. Application of a tomographic static correction method with multi-information constraints in the Longmen Piedmont[J]. Geophysical Prospecting for Petroleum, 2021, 60(Suppl 1):102-109.
[3] 刘桓,苏勤,曾华会,等.近地表Q补偿技术在川中地区致密气勘探中的应用[J].岩性油气藏, 2021, 33(3):104-112. LIU Huan, SU Qin, ZENG Huahui, et al. Application of nearsurface Q compensation technology in tight gas exploration in central Sichuan Basin[J]. Lithologic Reservoirs, 2021, 33(3):104-112.
[4] 王官超.高精度弹性波动方程反演方法理论研究[D].北京:中国石油大学(北京), 2020. WANG Guanchao. Theoretical research on high-precision elastic wave equation inversion[D]. Beijing:China University of Petroleum (Beijing), 2020.
[5] 杨午阳,杨文采,刘全新,等.三维F-X域粘弹性波动方程保幅偏移方法[J].岩性油气藏, 2007, 19(1):86-91. YANG Wuyang, YANG Wencai, LIU Quanxin, et al. 3D frequency and space domain amplitude-preserved migration with viscoelastic wave equations[J]. Lithologic Reservoirs, 2007, 19(1):86-91.
[6] 陈生昌,刘亚楠,李代光.基于波动方程偏移的地震数据地层成像[J].石油地球物理勘探, 2022, 57(5):1105-1113. CHEN Shengchang, LIU Yanan, LI Daiguang. Stratigraphic imaging with seismic data based on wave equation migration[J]. Oil Geophysical Prospecting, 2022, 57(5):1105-1113.
[7] 于常青,杨午阳,杨文采.关于油气地震勘探的基础研究问题[J].岩性油气藏, 2007, 19(2):117-120. YU Changqing, YANG Wuyang, YANG Wencai. About basic research of petroleum seismic prospecting[J]. Lithologic Reservoirs, 2007, 19(2):117-120.
[8] 王孝,刘文卿,曾华会,等.复杂区分层约束近地表建模方法及应用[J].岩性油气藏, 2018, 30(5):68-73. WANG Xiao, LIU Wenqing, ZENG Huahui, et al. Stratified constrained near-surface model building method and its application in complex surface area[J]. Lithologic Reservoirs, 2018, 30(5):68-73.
[9] 许鑫,张凯,王非翊,等.基于地震DNA算法的一种新的初至拾取方法[J].地球物理学进展, 2020, 35(5):1894-1901. XU Xin, ZHANG Kai, WANG Feiyi, et al. New method of first break picking based on seismic DNA algorithm[J]. Progress in Geophysics, 2020, 35(5):1894-1901.
[10] 许鑫,张凯,李振春,等.机器学习在地震数据初至拾取的应用[C].南京:SPG/SEG南京2020年国际地球物理会议论文集, 2020:974-977. XU Xin, ZHANG Kai, LI Zhenchun, et al. The application of machine learning in first-arrival picking of seismic data[C]. Nanjing:SPG/SEG Nanjing 2020 International Geophysical Conference Proceedings, 2020:974-977.
[11] MA Yuanyuan,CAI Siyuan, RECTOR J W, et al. Automatic first arrival picking for borehole seismic data using a pixel-level network[G]. SEG Technical Program Expanded Abstracts, 2018:2463-2467.
[12] XIE Tao,ZHAO Yue,JIAO Xuming, et al. First-break automatic picking with fully convolutional networks and transfer learning[G]. SEG Technical Program Expanded Abstracts, 2018:4972-4976.
[13] VIDALE J. Finite-difference calculation of traveltimes[J]. Bulletin of the Seismological Society of America, 1988, 78(6):2062-2076.
[14] VIDALE J. Finite-difference calculation of traveltimes in three dimensions[J]. Geophysics, 1990, 55(5):521-526.
[15] SETHIAN J A. Fast marching methods[J]. Siam Review, 1999, 41(2):199-235.
[16] SETHIAN J A, POPOVICI A M. 3D traveltime computation using the fast marching method[J]. Geophysics, 1999, 64(2):516-523.
[17] SETHIAN J A. Level set methods and fast marching method[M]. London:Cambridge University Press, 1999.
[18] ZHAO Hongkai. A fast sweeping method for eikonal equation[J]. Mathematics of Computation, 2005, 74(250):603-627.
[19] HASSOUNA M S, FARAG A A. Multistencils fast marching methods:A highly accurate solution to the eikonal equation on cartesian domains[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9):1563-1574.
[20] 王飞,曲昕馨,刘四新,等.一种新的基于多模板快速推进算法和最速下降法的射线追踪方法[J].石油地球物理勘探, 2014, 49(6):1106-1114. WANG Fei, QU Xinxin, LIU Sixin, et al. A new ray tracing approach based on both multi-stencils fast marching and the steepest descent[J]. Oil Geophysical Prospecting, 2014, 49(6):1106-1114.
[21] 丁鹏程.三维初至波走时层析反演[D].青岛:中国石油大学(华东), 2017. DING Pengcheng. Three-dimensional first-arrival traveltime tomography[D]. Qingdao:China University of Petroleum (East China), 2017.
[22] 丁鹏程,杨国权,李振春,等.基于三维多模板快速推进算法的复杂近地表射线追踪[J].石油物探, 2016, 55(4):483-492. DING Pengcheng, YANG Guoquan, LI Zhenchun, et al. Ray tracing based on 3 D multi-stencils fast marching algorithm for complex near-surface model[J]. Geophysical Prospecting for Petroleum, 2016, 55(4):483-492.
[23] 吕雪梅,张献兵,康平,等.基于大数据量的初至层析成像算法优化[J].北京大学学报(自然科学版), 2021, 57(3):425-434. LYU Xuemei, ZHANG Xianbing, KANG Ping, et al. Algorithm optimization of first-break tomography statics based on large datasets[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57(3):425-434.
[24] 李天扬,李桐林,孟相禹.基于程函方程快速行进法的地震走时层析成像法[J].世界地质, 2021, 40(3):664-670. LI Tianyang, LI Tonglin, MENG Xiangyu. Seismic travel time tomography based on fast marching method of eikonal equation[J]. Global Geology, 2021, 40(3):664-670.
[25] 刘玉柱,杨积忠.有效利用初至信息的偏移距加权地震层析成像方法[J].石油物探, 2014, 53(1):99-105. LIU Yuzhu, YANG Jizhong. Offset-weighted seismic tomography aimed at using the first arrival effectively[J]. Geophysical Prospecting for Petroleum, 2014, 53(1):99-105.
[26] 杨国权,丁鹏程,李振春,等.应用线性程函方程和整形正则化的三维初至波旅行时层析[J].石油地球物理勘探, 2017, 52(2):264-272. YANG Guoquan, DING Pengcheng, LI Zhenchun, et al.3D firstarrival traveltime tomography with linearized eikonal equation and shaping regularization[J]. Oil Geophysical Prospecting, 2017, 52(2):264-272.
[27] 王孝,曾华会,刘文卿,等.基于微测井分步约束的近地表速度层析反演[J].石油地球物理勘探, 2018, 53(增刊1):69-74. WANG Xiao, ZENG Huahui, LIU Wenqing, et al. Near-surface velocity tomographic inversion with a joint stepped-constraint of uphole and firstbreak information[J]. Oil Geophysical Prospecting, 2018, 53(Suppl 1):69-74.
[28] 邴琦.复杂近地表多信息约束初至波层析成像方法研究[D].长春:吉林大学, 2021. BING Qi. Study on complex near-surface first arrival tomography method with multiple information constraints[D]. Changchun:Jilin University, 2021.
[29] 赵磊,冯波,王华忠.波动方程初至双差走时层析反演[J].石油物探, 2021, 60(2):304-311. ZHAO Lei, FENG Bo, WANG Huazhong. Wave-equation double difference first arrival tomography[J]. Geophysical Prospecting for Petroleum, 2021, 60(2):304-311.
[30] 谢春,刘玉柱,董良国,等.伴随状态法初至波走时层析[J].石油地球物理勘探, 2014, 49(5):877-883. XIE Chun, LIU Yuzhu, DONG Liangguo, et al. First arrival traveltime tomography based on the adjoint state method[J]. Oil Geophysical Prospecting, 2014, 49(5):877-883.
[31] ZHANG Jie, TOKSÖZ M N. Nonlinear refraction traveltime tomography[J]. Geophysics, 1998, 63(5):1726-1737.
[32] TIKHONOV A N. Solution of incorrectly formulated problems and the regularization method[J]. Soviet Mathematical Doklady, 1963, 5:1035-1038.
[33] SCALES J A. Tomographic inversion via the conjugate gradient method[J]. Geophysics, 1987, 52(2):179-185.
[34] MORGAN F D O. Electronics of sulfide minerals:Implications for induced polarization[D]. Boston:Massachusetts Institute of Technology, 1981.
[1] WU Zhongyuan, ZHANG Xin, ZHANG Chunlei, WANG Haiying. Lithology identification based on LSTM recurrent neural network [J]. Lithologic Reservoirs, 2021, 33(3): 120-128.
[2] SUN Yushu, HUANG Yun, LIANG Ting, JI Hancheng, XIANG Pengfei, XU Xinrong. Identification of complex carbonate lithology by logging based on XGBoost algorithm [J]. Lithologic Reservoirs, 2020, 32(4): 98-106.
[3] SONG Xuanyi, LIU Yuetian, MA Jing, WANG Junqiang, KONG Xiangming, REN Xingnan. Productivity forecast based on support vector machine optimized by grey wolf optimizer [J]. Lithologic Reservoirs, 2020, 32(2): 134-140.
[4] WANG Xiao, LIU Wenqing, ZENG Huahui, YANG Wei. Stratified constrained near-surface model building method and its application in complex surface area [J]. Lithologic Reservoirs, 2018, 30(5): 68-73.
[5] WANG Xiao, LIU Wenqing, ZENG Huahui, YANG Wei. Stratified constrained near-surface model building method and its application in complex surface area [J]. Lithologic Reservoirs, 2018, 30(4): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
TRENDMD: