Lithologic Reservoirs ›› 2021, Vol. 33 ›› Issue (3): 120-128.doi: 10.12108/yxyqc.20210312

• EXPLORATION TECHNOLOGY • Previous Articles     Next Articles

Lithology identification based on LSTM recurrent neural network

WU Zhongyuan1, ZHANG Xin2, ZHANG Chunlei3, WANG Haiying1   

  1. 1. School of Science, China University of Geosciences(Beijing), Beijing 100083, China;
    2. School of Statistics, Beijing Normal University, Beijing 100875, China;
    3. Beijing Zhongdirunde Petroleum Technology Co., Ltd., Beijing 100083, China
  • Received:2020-07-22 Revised:2020-09-06 Published:2021-06-03

Abstract: A lithology recognition method by long-short-term memory neural network(LSTM)was proposed for complex carbonate reservoirs with complex composition and diverse lithology,to overcome obstacles troubling traditional identification,and effective results were showed with a case from gas field. Due to the inadequate ability of general machine learning methods in extracting the characteristics of sedimentary sequence,the LSTM method was introduced into the improvement for lithology identification. Taking the Lower Paleozoic carbonate reservoir in eastern block of Sulige gas field as an example,six sensitive parameters were selected to construct a lithology identification model based on LSTM,such as GRPe,DENRLLDAC and CNL. The results show that lithology identification accuracy based on LSTM increases by 1.40%-12.25% above traditional models(Naive Bayes,KNN,Decision Tree,SVM and HMM),and can provide more reliable support for the characterization and evaluation of complex carbonate reservoirs.

Key words: long-short-term memory neural network, lithology identification, carbonate reservoir, machine learning

CLC Number: 

  • P618.13
[1] 袁照威,段正军,张春雨,等.基于马尔科夫概率模型的碳酸盐岩储集层测井岩性解释.新疆石油地质,2017,38(1):96-102. YUAN Z W,DUAN Z J,ZHANG C Y,et al. Interpretation of logging lithology in carbonate reservoirs based on Markov Chain probability model. Xinjiang Petroleum Geology,2017,38(1):96-102.
[2] 成大伟,袁选俊,周川闽,等.测井岩性识别方法及应用:以鄂尔多斯盆地中西部长7油层组为例.中国石油勘探,2016,21(5):117-126. CHENG D W,YUAN X J,ZHOU C M,et al. Logging lithology identification methods and their application:A case study on Chang 7 member in central-western Ordos Basin,NW China. China Petroleum Exploration,2016,21(5):117-126.
[3] 王泽华,朱筱敏,孙中春,等.测井资料用于盆地中火成岩岩性识别及岩相划分:以准噶尔盆地为例.地学前缘,2015,22(3):254-268. WANG Z H,ZHU X M,SUN Z C,et al. Igneous lithology identification and lithofacies classification in the basin using logging data:Taking Junggar Basin as an example. Earth Science Frontiers,2015,22(3):254-268.
[4] 马峥,张春雷,高世臣.主成分分析与模糊识别在岩性识别中的应用.岩性油气藏,2017,29(5):127-133. MA Z,ZHANG C L,GAO S C. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs,2017,29(5):127-133.
[5] 王振洲,张春雷,高世臣.利用决策树方法识别复杂碳酸盐岩岩性:以苏里格气田苏东41-33区块为例.油气地质与采收率,2017,24(6):25-33. WANG Z Z,ZHANG C L,GAO S C. Lithology identification of complex carbonate rocks based on decision tree method:An example from block Sudong 41-33 in Sulige gas field. Petroleum Geology and Recovery Efficiency,2017,24(6):25-33.
[6] 孙予舒,黄芸,梁婷,等.基于XGBoost算法的复杂碳酸盐岩岩性测井识别.岩性油气藏,2020,32(4):98-106. SUN Y S,HUANG Y,LIANG T,et al. Identification of complex carbonate lithology by logging based on XGBoost algorithm. Lithologic Reservoirs,2020,32(4):98-106.
[7] AL-ANAZI A,GATES I D. A support vector machine algorithm to classify lithofacies and model permeability in heterogeneous reservoirs. Engineering Geology,2010,114(3/4):267-277.
[8] 袁照威,陈龙,高世臣,等.基于马尔科夫-贝叶斯模拟算法的多地震属性沉积相建模方法:以苏里格气田苏10区块为例. 油气地质与采收率,2017,24(3):37-43. YUAN Z W,CHEN L,GAO S C,et al. A method of sedimentary facies modeling through integration of multi-seismic attributes based on Markov-Bayes model:An example from Su10 area in the north of Sulige gas field. Petroleum Geology and Recovery Efficiency,2017,24(3):37-43.
[9] 仲鸿儒,成育红,林孟雄,等.基于SOM和模糊识别的复杂碳酸盐岩岩性识别.岩性油气藏,2019,31(5):84-91. ZHONG H R,CHENG Y H,LIN M X,et al. Lithology identification of complex carbonate based on SOM and fuzzy recognition. Lithologic Reservoirs,2019,31(5):84-91.
[10] 刘跃杰,刘书强,马强,等. BP神经网络法在三塘湖盆地芦草沟组页岩岩相识别中的应用.岩性油气藏,2019,31(4):101-111. LIU Y J,LIU S Q,MA Q,et al. Application of BP neutral network method to identification of shale lithofacies of Lucaogou Formation in Santanghu Basin. Lithologic Reservoirs,2019,31(4):101-111.
[11] ELFEKI A,DEKKING M. A Markov Chain model for subsurface characterization:Theory and applications. Mathematical Geology,2001,33(5):569-589.
[12] LINDBERG D V,GRANA D. Petro-elastic log-facies classification using the expectation maximization algorithm and hidden markov models. Math Geosciences,2015,47(6):719-752.
[13] HOCHREITER S,SCHMIDHUBER J. Long short-term memory. Neural Computation,1997,9(8):1735-1780.
[14] 张东晓,陈云天,孟晋.基于循环神经网络的测井曲线生成方法. 石油勘探与开发,2018,45(4):598-607. ZHANG D X,CHEN Y T,MENG J. Synthetic well logs generation via recurrent neural networks. Petroleum Exploration and Development,2018,45(4):598-607.
[15] ZHANG J F,ZHU Y,ZHANG X P,et al. Developing a long short-term memory(LSTM)based model for predicting water table depth in agricultural areas. Journal of Hydrology,2018,6(561):918-929.
[16] BAO W,YUE J L,RAO Y L. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. Plos One,2017,12(7):e0180944.
[17] SCHUSTER M,PALIWAL K K. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing,1997,45(11):2673-2681.
[18] BENGIO Y,SIMARD P,FRASCONI P. Learning long-term dependencies with Gradient Descent is difficult. IEEE Trans Neural Network,2002,5(2):157-166.
[19] GRAVES A,JAITLY N,Mohamed A R. Hybrid speech recognition with deep bidirectional LSTM. Automatic Speech Recognition and Understanding(ASRU),2013 IEEE Workshop on. IEEE,2013.
[20] 罗群,吴安彬,王井伶,等.中国北方页岩气成因类型、成气模式与勘探方向.岩性油气藏,2019,31(1):1-11. LUO Q,WU A B,WANG J L,et al. Genetic types,generation models,and exploration direction of shale gas in northern China. Lithologic Reservoirs,2019,31(1):1-11.
[21] 靳军,王剑,杨召,等. 准噶尔盆地克-百断裂带石炭系内幕储层测井岩性识别.岩性油气藏,2018,30(2):85-92. JIN J,WANG J,YANG Z,et al. Welling logging identification of Carboniferous volcanic inner buried-hill reservoirs in Ke-Bai fault zone in Junggar Basin. Lithologic Reservoirs,2018,30(2):85-92.
[1] ZHANG Tianze, WANG Hongjun, ZHANG Liangjie, ZHANG Wenqi, XIE Mingxian, LEI Ming, GUO Qiang, ZHANG Xuerui. Application of ray-path elastic impedance inversion in carbonate gas reservoir prediction of the right bank of Amu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 56-65.
[2] GUI Jinyong, LI Shengjun, GAO Jianhu, LIU Bingyang, GUO Xin. A random forests prediction method for gas saturation based on feature variable extension [J]. Lithologic Reservoirs, 2024, 36(2): 65-75.
[3] CHEN Shuyang, HE Yunfeng, WANG Lixin, SHANG Haojie, YANG Xinrui, YIN Yanshu. Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No. 1 fault zone,Tarim Basin [J]. Lithologic Reservoirs, 2024, 36(2): 124-135.
[4] YANG Wuyang, WEI Xinjian, LI Haishan. The past,present and future of intelligent geophysical technology [J]. Lithologic Reservoirs, 2024, 36(2): 170-188.
[5] GUO Haifeng, XIAO Kunye, CHENG Xiaodong, DU Yebo, DU Xudong, NI Guohui, LI Xianbing, JI Ran. Determination of effective permeability of granitic buried-hill fractured reservoirs in Bongor Basin,Chad [J]. Lithologic Reservoirs, 2023, 35(6): 117-126.
[6] TANG Yuzhe, CHAI Hui, WANG Hongjun, ZHANG Liangjie, CHEN Pengyu, ZHANG Wenqi, JIANG Lingzhi, PAN Xingming. Characteristics and new prediction methods of Jurassic subsalt carbonate reservoirs in the eastern right bank of Amu Darya,Central Asia [J]. Lithologic Reservoirs, 2023, 35(6): 147-158.
[7] XU Xin, YANG Wuyang, ZHANG Kai, WEI Xinjian, ZHANG Xiangyang, LI Haishan. Optimization of 3D first-arrival traveltime tomography inversion [J]. Lithologic Reservoirs, 2023, 35(4): 79-89.
[8] SONG Xingguo, CHEN Shi, YANG Minghui, XIE Zhou, KANG Pengfei, LI Ting, CHEN Jiuzhou, PENG Zijun. Development characteristics of F16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution [J]. Lithologic Reservoirs, 2023, 35(3): 99-109.
[9] NI Xinfeng, SHEN Anjiang, QIAO Zhanfeng, ZHENG Jianfeng, ZHENG Xingping, YANG Zhao. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin [J]. Lithologic Reservoirs, 2023, 35(2): 144-158.
[10] SONG Chuanzhen, MA Cuiyu. Oil-water flow law of Ordovician fractured-vuggy reservoirs in Tahe Oilfield [J]. Lithologic Reservoirs, 2022, 34(4): 150-158.
[11] YE Tao, NIU Chengmin, WANG Qingbin, GAO Kunshun, SUN Zhe, CHEN Anqing. Identification of metamorphite lithology in paleo buried hill by compositionstructure classification: A case study from Archean in Bohai Sea [J]. Lithologic Reservoirs, 2021, 33(6): 156-164.
[12] SUN Liang, LI Baozhu, LIU Fan. Efficient management of water flooding reservoirs based on Pollock streamline tracing [J]. Lithologic Reservoirs, 2021, 33(3): 169-176.
[13] YANG Meihua, ZHONG Haiquan, LI Yingchuan. New production index curve of fractured-vuggy carbonate reservoirs [J]. Lithologic Reservoirs, 2021, 33(2): 163-170.
[14] LI Shubo, GUO Xuguang, ZHENG Menglin, WANG Zesheng, LIU Xinlong. Lithology identification of Carboniferous volcanic rocks in Xiquan area, eastern Junggar Basin [J]. Lithologic Reservoirs, 2021, 33(1): 258-266.
[15] SUN Yushu, HUANG Yun, LIANG Ting, JI Hancheng, XIANG Pengfei, XU Xinrong. Identification of complex carbonate lithology by logging based on XGBoost algorithm [J]. Lithologic Reservoirs, 2020, 32(4): 98-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: