岩性油气藏 ›› 2025, Vol. 37 ›› Issue (4): 115–126.doi: 10.12108/yxyqc.20250411

• 地质勘探 • 上一篇    

准噶尔盆地东部石钱滩凹陷石炭系石钱滩组烃源岩特征及资源潜力

李振明1,2, 贾存善1,2, 王斌1,2, 宋振响1,2, 邱岐1,2, 王继远1,2, 徐陈杰1,2, 崔钰瑶1,2   

  1. 1. 中国石化石油勘探开发研究院 无锡石油地质研究所, 江苏 无锡 214126;
    2. 中国石化油气成藏重点实验室, 江苏 无锡 214126
  • 收稿日期:2024-09-18 修回日期:2024-12-25 发布日期:2025-07-05
  • 第一作者:李振明(1994-),男,硕士,助理研究员,从事油气成藏与资源评价研究。地址:(214126)江苏省无锡市滨湖区蠡湖大道2060号。Email:lizhm2020.syky@sinopec.com。
  • 基金资助:
    中国石化科技部重大项目“‘十四五’中国石化油气资源评价综合研究”(编号:P23230)和中国石化科技部项目“油气勘查区块分类分级评价与矿权策略研究”(编号:P24235)联合资助。

Characteristics and resource potential of source rocks of Carboniferous Shiqiantan Formation in Shiqiantan Sag,eastern Junggar Basin

LI Zhenming1,2, JIA Cunshan1,2, WANG Bin1,2, SONG Zhenxiang1,2, QIU Qi1,2, WANG Jiyuan1,2, XU Chenjie1,2, CUI Yuyao1,2   

  1. 1. Wuxi Research Institute of Petroleum Geology SINOPEC, Wuxi 214126, Jiangsu, China;
    2. State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, Wuxi 214126, Jiangsu, China
  • Received:2024-09-18 Revised:2024-12-25 Published:2025-07-05

摘要: 准噶尔盆地东部石钱滩凹陷多口钻井试获工业油气流,展现出良好的勘探潜力。基于全岩有机岩石学特征、热解参数、生物标志化合物特征等,对准噶尔盆地东部石钱滩凹陷石炭系烃源岩有机质类型、丰度、成熟度及沉积环境与母质来源进行了分析,并通过生烃模拟实验对其生烃潜力进行了评价,明确了有效烃源岩发育的控制因素,圈定规模烃源灶的展布范围,并量化其资源规模。研究结果表明:①准噶尔盆地石钱滩凹陷石炭系石钱滩组烃源岩干酪根显微组分以镜质组和惰质组为主,热解参数和稳定碳同位素具有Ⅱ—Ⅲ型特征;有机质丰度较高,热解TOC平均值为2.79%,生烃潜量平均值为0.96 mg/g,Ro为0.70%~1.66%,整体均进入生烃门限,深洼区达到凝析油—湿气阶段;凹陷边缘沉积于弱还原—弱氧化的淡水环境,生烃母质以高等植物为主,而凹陷中心则为还原的偏咸水环境,生烃母质以高等植物及水生生物混合母质输入为主。②受控于原始样品成熟度和品质,半封闭体系下石钱滩组烃源岩烃产率比以往研究成果偏低,结合干酪根生烃理论,认为烃源岩原始生油产率高峰值约150 mg(/g·TOC),原始生气产率高峰值约250 mg(/g·TOC)。③构造活动及沉积背景控制了有效烃源岩的发育及分布,凹陷中心烃源岩厚度可达500 m,TOC可达3.0%。凹陷中心生油强度可达500×104 t/km2或以上,生气强度可达150×108 m3/km2或以上。石钱滩组石油原地资源量约6 600×104 t,天然气原地资源量约730×108 m3,具备形成中型油气田的资源潜力,是准噶尔盆地东部石炭系油气勘探的重要方向和接替领域。

关键词: 烃源岩, 生烃模拟实验, 沉积环境, 构造运动, 母质来源, 生烃潜力, 石钱滩组, 石炭系, 石钱滩凹陷, 准噶尔盆地

Abstract: Several wells in Shiqiantan Sag of eastern Junggar Basin have obtained industrial oil and gas flow, which shows good exploration potential. The organic matter type,abundance,maturity,sedimentary environment and parent material of Carboniferous source rocks in Shiqiantan Sag,eastern Junggar Basin were analyzed based on organic petrology characteristics,pyrolysis parameters,and biomarker characteristics. The hydrocarbon generation potential of Shiqiantan Formation source rocks was evaluated through simulation experiment for hydrocarbon-generating. The controlling factors for the development of effective source rocks were identified, the distribution range of large-scale source stoves was delineated,and the resource quantity was calculated. The results show that: (1)The kerogen macerals of Carboniferous Shiqiantan Formation in Shiqiantan Sag,Junggar Basin are mainly vitrinite and inertinite,and the pyrolysis parameters and stable carbon isotopes have the characteristics of type Ⅱ-Ⅲ. The organic matter abundance is relatively high,with an average pyrolysis TOC value of 2.79%,an average hydrocarbon generation potential value of 0.96 mg/g,and vitrinite reflectance(Ro)ranging from 0.70% to 1.66%,all of them have entered the hydrocarbon generation threshold,and the deep subsag area has reached the stage of condensate oil-wet gas. The edge of the sag is deposited in a weakly reduced to weakly oxidized freshwater environment,and the parent material is mainly composed of higher plants,while the center of the sag is a reduced brackish water environment and the parent material is mainly a mixture of higher plants and aquatic organisms.(2)Controlled by the maturity and quality of the original samples,the hydrocarbon yield ratio of Shiqiantan Formation source rocks in a semi-closed system is relatively lower than previous research results. Combined with the theory of kerogen hydrocarbon generation,it is believed that the peak value of the original oil generation yield of the source rocks is about 150 mg/(g·TOC),and the peak value of the original gas generation yield is about 250 mg/(g·TOC).(3)The tectonic activity and sedimentary background control the development and distribution of effective source rocks. The thickness of the source rocks in the center of the sag can be 500 m,and the TOC value can be up to 3.0%. The maximum oil generation intensity in the center of the sag can be over 500×104 t/km2,and the maximum gas generation intensity can be over 150×108 m3/km2. There are about 6 600×104t oil resources and 730×108 m3 natural gas resources in place of Shiqiantan Formation,which has the potential to form medium-sized oil and gas fields,and it exhibits target direction and successor field of Carboniferous oil and gas exploration in eastern Junggar Basin.

Key words: source rock, hydrocarbon generation simulation experiment, sedimentary environment, tectonic movement, parent material, hydrocarbon generation potential, Shiqiantan Formation, Carboniferous, Shiqiantan Sag, Junggar Basin

中图分类号: 

  • TE122.1
[1] 胡素云,王小军,曹正林,等.准噶尔盆地大中型气田(藏)形成条件与勘探方向[J].石油勘探与开发,2020,47(2):247-259.HU Suyun,WANG Xiaojun,CAO Zhenglin,et al.Formation conditions and exploration direction of large and medium gas reservoirs in the Junggar Basin,NW China[J].Petroleum Exploration and Development,2020,47(2):247-259.
[2] 宋永,唐勇,何文军,等.准噶尔盆地油气勘探新领域、新类型及勘探潜力[J].石油学报,2024,45(1):52-68.SONG Yong,TANG Yong,HE Wenjun,et al.New fields,new types and exploration potentials of oil-gas exploration in Junggar Basin[J].Acta Petrolei Sinica,2024,45(1):52-68.
[3] 李建忠.第四次油气资源评价[M].北京:石油工业出版社,2019.LI Jianzhong.Fourth assessment for oil and gas resource[M].Beijing:Petroleum Industry Press,2019.
[4] 匡立春,吕焕通,王绪龙,等.准噶尔盆地天然气勘探实践与克拉美丽气田的发现[J].天然气工业,2010,30(2):1-6.KUANG Lichun,LYU Huantong,WANG Xulong,et al.Exploration of volcanic gas reservoirs and discovery of the Kelameili gas field in the Junggar Basin[J].Natural Gas Industry,2010,30(2):1-6.
[5] 支东明,陈旋,杨润泽,等.准噶尔盆地东部残留海相凹陷勘探实践及全油气系统[J].新疆石油地质,2024,45(2):127-138.ZHI Dongming,CHEN Xuan,YANG Runze,et al.Exploration practice and total petroleum system in residual marine sag,Eastern Junggar Basin[J].Xinjiang Petroleum Geology,2024,45(2):127-138.
[6] 于洪洲,张关龙,王越,等.石钱滩凹陷地质结构及构造演化[J].地质论评,2023,69(增刊1):61-62.YU Hongzhou,ZHANG Guanlong,WANG Yue,et al.Geological structure and tectonic evolution of Shiqiantan sag[J].Geological Review,2023,69(Suppl 1):61-62.
[7] 魏新,唐建云,宋红霞,等.鄂尔多斯盆地甘泉地区上古生界烃源岩地球化学特征及生烃潜力[J].岩性油气藏,2022,34(6):92-100.WEI Xin,TANG Jianyun,SONG Hongxia,et al.Geochemical characteristics and hydrocarbon generation potential of Upper Paleozoic source rocks in Ganquan area,Ordos Basin[J].Lithologic Reservoirs,2022,34(6):92-100.
[8] 黄彦杰,白玉彬,孙兵华,等.鄂尔多斯盆地富县地区延长组长7烃源岩特征及评价[J].岩性油气藏,2020,32(1):66-75.HUANG Yanjie,BAI Yubin,SUN Binghua,et al.Characteristics and evaluation of Chang 7 source rock of Yanchang Formation in Fuxian area,Ordos Basin[J].Lithologic Reservoirs,2020,32(1):66-75.
[9] 涂建琪,王淑芝,费轩冬.干酪根有机质类型划分的若干问题的探讨[J].石油实验地质,1998,20(2):187-191.TU Jianqi,WANG Shuzhi,FEI Xuandong.Discussion on certain problems to the division of organic matter types in kerogen[J].Petroleum Geology & Experiment,1998,20(2):187-191.
[10] 林潼,杨威,焦立新,等.准噶尔盆地东部石炭系海相砂岩气藏特征、潜力与勘探方向[J].天然气地球科学,2024,35(2):245-258.LIN Tong,YANG Wei,JIAO Lixin,et al.Characteristics,potential and exploration direction of Carboniferous Marine sandstone gas reservoirs in eastern Junggar Basin[J].Natural Gas Geoscience,2024,35(2):245-258.
[11] 唐勇,王智强,庞燕青,等.准噶尔盆地西部坳陷二叠系下乌尔禾组烃源岩生烃潜力评价[J].岩性油气藏,2023,35(4):16-28.TANGYong,WANG Zhiqiang,PANGYanqing,et al.Hydrocarbongenerating potential of source rocks of Permian lower Urho Formation in western depression,Junggar Basin[J].Lithologic Reservoirs,2023,35(4):16-28.
[12] 杨海波,冯德浩,杨小艺,等.准噶尔盆地东道海子凹陷二叠系平地泉组烃源岩特征及热演化史模拟[J].岩性油气藏,2024,36(5):156-166.YANG Haibo,FENG Dehao,YANG Xiaoyi,et al.Characteristics of source rocks and thermal evolution simulation of Permian Pingdiquan Formation in Dongdaohaizi Sag,Junggar Basin[J].Lithologic Reservoirs,2024,36(5):156-166.
[13] 江梦雅,王江涛,刘龙松,等.准噶尔盆地盆1井西凹陷石炭系-二叠系天然气特征及成藏主控因素[J].岩性油气藏,2023,35(3):138-151.JIANG Mengya,WANG Jiangtao,LIU Longsong,et al.Characteristics and main controlling factors of natural gas of CarboniferousPermian in western well Pen-1 sag,Junggar Basin[J].Lithologic Reservoirs,2023,35(3):138-151.
[14] 黄籍中.干酪根的稳定碳同位素分类依据[J].地质地球化学,1988,16(3):66-68.HUANG Jizhong.Classification criteria for stable carbon isotopes of kerogen[J].Earth and Environment,1988,16(3):66-68.
[15] 赵静,黄志龙,刘春锋,等.西湖凹陷平北地区煤系烃源岩识别与分布[J].岩性油气藏,2021,33(5):95-106.ZHAO Jing,HUANG Zhilong,LIU Chunfeng,et al.Identification and distribution characteristics of coal-bearing source rocks in Pingbei area,Xihu Sag[J].Lithologic Reservoirs,2021,33(5):95-106.
[16] 陈建平,赵长毅,何忠华.煤系有机质生烃潜力评价标准探讨[J].石油勘探与开发,1997,24(1):1-5.CHEN Jianping,ZHAO Changyi,HE Zhonghua.Criteria for evaluating the hydrocarbon generating potential of organic matter in coal measures[J].Petroleum Exploration and Development,1997,24(1):1-5.
[17] TEICHMÜLLER M,DURAND B.Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals,and comparison with results of the rock-eval pyrolysis[J].International Journal of Coal Geology,1983,2(3):197-230.
[18] GONG Deyu,SONG Yong,WEI Yanzhao,et al.Geochemical characteristics of Carboniferous coaly source rocks and natural gases in the Southeastern Junggar Basin,NW China:Implications for new hydrocarbon explorations[J].International Journal of Coal Geology,2019,202(1):171-189.
[19] 陈建平,王绪龙,陈践发,等.甲烷碳同位素判识天然气及其源岩成熟度新公式[J].中国科学:地球科学,2021,51(4):560-581.CHEN Jianping,WANG Xulong,CHEN Jianfa,et al.New equation to decipher the relationship between carbon isotopic composition of methane and maturity of gas source rocks[J].Scientia Sinica (Terrae),2021,51(4):560-581.
[20] 朱康乐,高岗,杨光达,等.辽河坳陷清水洼陷古近系沙河街组深层烃源岩特征及油气成藏模式[J].岩性油气藏,2024,36(3):146-157.ZHU Kangle,GAO Gang,YANG Guangda,et al.Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Formation in Qingshui subsag,Liaohe Depression[J].Lithologic Reservoirs,2024,36(3):146-157.
[21] MAGARA K.Thickness of removed sedimentary rocks,paleopore pressure,and paleotemperature,southwestern part of Western Canada Basin[J].AAPG Bulletin,1976,60(4):554-565.
[22] 王元杰,蔡川,肖阳,等.冀中坳陷束鹿凹陷潜山原油地球化学特征与油源对比[J].地球科学,2021,46(10):3629-3644.WANG Yuanjie,CAI Chuan,XIAO Yang,et al.Geochemical characteristics and oil-source correlation of crude oils of buried hills in Shulu sag,Jizhong Depression[J].Earth Science,2021,46(10):3629-3644.
[23] HALL P B.The distribution of cyclic alkanes in two lacustrine deposits[J].Advances in Organic Geochemistry,1983:576-587.
[24] 蒋中发,丁修建,王忠泉,等.吉木萨尔凹陷二叠系芦草沟组烃源岩沉积古环境[J].岩性油气藏,2020,32(6):109-119.JIANG Zhongfa,DING Xiujian,WANG Zhongquan,et al.Sedimentary paleoenvironment of source rocks of Permian Lucaogou Formation in Jimsar Sag[J].Lithologic Reservoirs,2020,32(6):109-119.
[25] 阳宏,刘成林,王飞龙,等.渤中凹陷东营组古沉积环境及烃源岩发育模式[J].岩性油气藏,2021,33(6):81-92.YANG Hong,LIU Chenglin,WANG Feilong,et al.Paleoenvironment and development model of source rocks of Dongying Formation in Bozhong Sag[J].Lithologic Reservoirs,2021,33(6):81-92.
[26] 邓美玲,王宁,李新琦,等.渤海莱州湾凹陷中部古近系沙三段烃源岩地球化学特征及沉积环境[J].岩性油气藏,2023,35(1):49-62.DENG Meiling,WANG Ning,LI Xinqi,et al.Geochemical characteristics and sedimentary environment of source rocks of the third member of Paleogene Shahejie Formation in central Laizhouwan Sag,Bohai Sea[J].Lithologic Reservoirs,2023,35(1):49-62.
[27] 李志明,郑伦举,马中良,等.烃源岩有限空间油气生排模拟及其意义[J].石油实验地质,2011,33(5):447-451.LI Zhiming,ZHENG Lunju,MA Zhongliang,et al.Simulation of source rock for hydrocarbon generation and expulsion in finite space and its significance[J].Petroleum Geology & Experiment,2011,33(5):447-451.
[28] 马中良,郑伦举,李志明.烃源岩有限空间温压共控生排烃模拟实验研究[J].沉积学报,2012,30(5):955-963.MA Zhongliang,ZHENG Lunju,LI Zhiming.The thermocompression simulation experiment of source rock hydrocarbon generation and expulsion in formation porosity[J].Acta Sedimentologica Sinica,2012,30(5):955-963.
[29] 曲彦胜,王圣柱,李艳丽,等.乌伦古地区石炭系烃源岩生烃潜力评价[J].特种油气藏,2016,23(2):31-35.QU Yansheng,WANG Shengzhu,LI Yanli,et al.Hydrocarbon potential evaluation of Carboniferous source-rocks in Wulungu[J].Special Oil & Gas Reservoirs,2016,23(2):31-35.
[30] 于淼,高岗,靳军,等.准噶尔盆地南缘下组合煤系烃源岩生烃模拟及高探1井油气源研究[J].石油实验地质,2022,44(4):687-697.YU Miao,GAO Gang,JIN Jun,et al.Hydrocarbon generation simulation of coaly source rocks in the Lower combination on the southern margin of Junggar Basin and indications for oil and gas sources of well Gaotan 1[J].Petroleum Geology & Experiment,2022,44(4):687-697.
[31] 王圣柱,梅文科,熊峥嵘,等.准噶尔盆地东北缘石炭系烃源岩生烃演化特征及其石油地质意义[J].石油实验地质,2023,45(4):667-680.WANG Shengzhu,MEI Wenke,XIONG Zhengrong,et al.Hydrocarbon generation and evolution characteristics of Carboniferous source rocks on the northeastern margin of the Junggar Basin and its petroleum geological significance[J].Petroleum Geology & Experiment,2023,45(4):667-680.
[32] 李建忠,杨润泽,杨斌,等.准噶尔盆地东部石钱滩凹陷上石炭统烃源岩地球化学特征及勘探意义[J].石油学报,2025,46(2):306-319.LI Jianzhong,YANG Runze,YANG Bin,et al.Geochemical characteristics and exploration significance of the Upper Carboniferous source rocks in Shiqiantan sag of the eastern Junggar Basin[J].Acta Petrolei Sinica,2025,46(2):306-319.
[33] 康积伦,付国斌,韩成,等.准噶尔盆地东部隆起石钱滩凹陷石钱滩组层序划分[J].新疆石油地质,2023,44(3):265-276.KANG Jilun,FU Guobin,HAN Cheng,et al.Sequence division of Shiqiantan Formation in Shiqiantan sag on eastern uplift of Junggar Basin[J].Xinjiang Petroleum Geology,2023,44(3):265-276.
[34] 张蔚,刘成林,张道勇,等.油气运聚系数统计模型建立及其在低勘探程度盆地的应用[J].中国石油勘探,2019,24(1):115-122.ZHANG Wei,LIU Chenglin,ZHANG Daoyong,et al.Establishment of statistical models for oil and gas migration and accumulation coeffcients and their applications in frontier exploration basins[J].China Petroleum Exploration,2019,24(1):115-122.
[35] 庞雄奇,李倩文,陈践发,等.含油气盆地深部高过成熟烃源岩古TOC恢复方法及其应用[J].古地理学报,2014,16(6):769-789.PANG Xiongqi,LI Qianwen,CHEN Jianfa,et al.Recovery method of original TOC and its application in source rocks at high mature-over mature stage in deep petroliferous basins[J].Journal of Palaeogeography(Chinese Edition),2014,16(6):769-789.
[36] 柳广弟,李剑,高岗.中国陆相烃源岩液态烃产率模拟实验[J].石油学报,2005,26(增刊1):55-57.LIU Guangdi,LI Jian,GAO Gang.Modeling of liquid hydrocarbongeneration ratio of terrestrial source rocks in main basins of China[J].Acta Petrolei Sinica,2005,26(Suppl 1):55-57.
[37] 姜正龙,罗霞,李剑,等.不同地质条件下各种类型气源岩气态烃产率的求取[J].沉积学报,2004,22(增刊1):84-90.JIANG Zhenglong,LUO Xia,LI Jian,et al.Caseous hydrocarbon generation of different types of source rocks under different geological conditions[J].Acta Sedimentologica Sinica,2004,22(Suppl 1):84-90.
[38] 柳广弟,赵文智,胡素云,等.油气运聚单元石油运聚系数的预测模型[J].石油勘探与开发,2003,30(5):53-55.LIU Guangdi,ZHAO Wenzhi,HU Suyun,et al.Prediction models of migration and accumulation coefficient for petroleum migration and accumulation unit[J].Petroleum Exploration and Development,2003,30(5):53-55.
[39] 刘成林,刘人和,罗霞,等.天然气资源评价重点参数研究[J].沉积学报,2004,22(增刊1):79-83.LIU Chenglin,LIU Renhe,LUO Xia,et al.Study on key parameters of natural gas resource assessment[J].Acta Sedimentologica Sinica,2004,22(Suppl):79-83.
[1] 尹照普, 朱峰, 周志尧, 王丽丽, 刘晓晔, 娜孜伊曼, 汪钰婷, 黄大瑞. 准噶尔盆地莫南斜坡侏罗系西山窑组油气成藏条件及富集主控因素[J]. 岩性油气藏, 2025, 37(3): 33-46.
[2] 邓高山, 董雪梅, 余海涛, 张洁, 岳喜伟, 任军民, 姜涛. 准噶尔盆地沙湾凹陷三叠系百口泉组油气成藏条件及勘探潜力[J]. 岩性油气藏, 2025, 37(3): 59-72.
[3] 王丽娟, 韩登林, 马良帅, 胡蓉蓉, 王晨晨, 马斌玉, 闫康, 朱朝彬. 渤海海域太古界潜山型储层特征及主控因素[J]. 岩性油气藏, 2025, 37(3): 84-94.
[4] 陈怀毅, 李龙, 白冰, 岳军培, 康荣, 张兴强. 渤海湾盆地莱州湾凹陷古近系沙四段走滑盐拱带特征及控藏作用[J]. 岩性油气藏, 2025, 37(3): 120-128.
[5] 何小龙, 张兵, 徐川, 肖斌, 田云英, 李琢, 何一帆. 窄河道砂体中钙质夹层特征及其对储层质量的影响——以川西北梓潼地区侏罗系沙一段为例[J]. 岩性油气藏, 2025, 37(3): 129-139.
[6] 李想, 付磊, 魏璞, 李俊飞, 徐港, 曹倩倩, 钟杨, 王振鹏. 沉积古地貌恢复及古地貌对沉积体系的控制作用——以准噶尔盆地石西地区三叠系百口泉组为例[J]. 岩性油气藏, 2025, 37(2): 38-48.
[7] 朱文奇, 昝春景, 张莹, 王涛, 史朝文, 巴李霞, 陈亮, 季汉成. 渤中凹陷西次洼古近系东营组异常高孔带特征及成因机制[J]. 岩性油气藏, 2025, 37(2): 70-80.
[8] 胡鑫, 朱筱敏, 金绪铃, 黄成, 周越, 程长领, 修金磊, 任新成. 准噶尔盆地永进地区侏罗系齐古组浅水辫状河三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2): 115-126.
[9] 何星, 金玮, 张帆, 霍秋立, 李跃, 鲍俊驰, 刘璐, 曾庆兵. 海拉尔盆地乌尔逊凹陷白垩系铜钵庙组原油地球化学特征及来源[J]. 岩性油气藏, 2025, 37(1): 41-52.
[10] 陈鹏, 武小宁, 林煜, 钟厚财, 张洁, 黄友华, 岳纹, 冷平. 准噶尔盆地车排子凸起石炭系构造特征与油气富集规律[J]. 岩性油气藏, 2025, 37(1): 68-77.
[11] 刘志峰, 朱小二, 柳广弟, 王祥, 李泽坤, 吴璇, 梁禹洋. 渤中凹陷西洼古近系和新近系油气成藏差异对比[J]. 岩性油气藏, 2025, 37(1): 78-89.
[12] 何岩, 许维娜, 党思思, 牟蕾, 林少玲, 雷章树. 准噶尔盆地陆梁地区侏罗系西山窑组钙质夹层成因及勘探意义[J]. 岩性油气藏, 2025, 37(1): 90-101.
[13] 陈红果, 张凤奇, 江青春, 刘红艳, 孙立东, 刘刚. 松辽盆地徐家围子断陷白垩系沙河子组超压形成机制及其演化特征[J]. 岩性油气藏, 2025, 37(1): 102-114.
[14] 桂诗琦, 罗群, 贺小标, 王千军, 王仕琛, 汪亮. 准噶尔盆地车排子凸起石炭系油气成藏主控因素及成藏模式[J]. 岩性油气藏, 2025, 37(1): 126-136.
[15] 李道清, 陈永波, 杨东, 李啸, 苏航, 周俊峰, 仇庭聪, 石小茜. 准噶尔盆地白家海凸起侏罗系西山窑组煤岩气“甜点”储层智能综合预测技术[J]. 岩性油气藏, 2024, 36(6): 23-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!