岩性油气藏 ›› 2025, Vol. 37 ›› Issue (1): 102–114.doi: 10.12108/yxyqc.20250109

• 地质勘探 • 上一篇    下一篇

松辽盆地徐家围子断陷白垩系沙河子组超压形成机制及其演化特征

陈红果1,2, 张凤奇1,2, 江青春3, 刘红艳4, 孙立东4, 刘刚3   

  1. 1. 西安石油大学 地球科学与工程学院, 西安 710065;
    2. 西安石油大学 陕西省油气成藏地质学重点实验室, 西安 710065;
    3. 中国石油勘探开发研究院, 北京 100083;
    4. 大庆油田有限责任公司勘探开发研究院, 黑龙江 大庆 163712
  • 收稿日期:2023-09-26 修回日期:2023-11-17 出版日期:2025-01-01 发布日期:2025-01-04
  • 第一作者:陈红果(1998—),男,西安石油大学在读硕士研究生,主要研究方向为非常规油气地质学、油气成藏地质学。地址:(710065)陕西省西安市雁塔区电子二路东段18号。Email:3272517496@qq.com。
  • 通信作者: 张凤奇(1981—),男,博士,教授,主要从事油气形成机制与油气成藏动力学方面的科研和教学工作。Email:zhangfq@xsyu.edu.cn。
  • 基金资助:
    中国石油前瞻性基础性科技攻关项目“深层超深层油气成藏过程与油气分布规律研究”(编号:2021DJ0203);国家自然科学基金面上项目“压力—应力耦合对前陆冲断带深层—超深层碎屑岩储层异常高原生孔隙的保存机制研究”(编号:42172164);西安石油大学研究生创新与实践能力培养计划项目(编号:YCS22113094)联合资助。

Overpressure-generating mechanism and its evolution characteristics of Cretaceous Shahezi Formation in Xujiaweizi Fault Depression,Songliao Basin

CHEN Hongguo1,2, ZHANG Fengqi1,2, JIANG Qingchun3, LIU Hongyan4, SUN Lidong4, LIU Gang3   

  1. 1. School of Earth Sciences and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
    2. Shaanxi Key Laboratory of Petroleum Accumulation Geology, Xi'an 710065, China;
    3. Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;
    4. Exploration and Production Research Institute, Daqing Oil field Limited Company, Daqing 163712, Heilongjiang, China
  • Received:2023-09-26 Revised:2023-11-17 Online:2025-01-01 Published:2025-01-04

摘要: 综合利用钻井、测井、压力测试以及分析化验等资料,对松辽盆地徐家围子断陷白垩系沙河子组现今超压特征及形成机制进行了分析,采用数值模拟方法对不同构造单元、不同岩性烃源岩超压的演化进行了定量恢复,并对超压贡献率进行了计算。研究结果表明:①徐家围子断陷白垩系沙河子组现今为常压-弱超压系统,凸起区超压最大;烃源岩超压以生烃增压作用为主,其次为欠压实作用,而储层超压为烃源岩超压对其的超压传递造成,与断裂及背斜的形成和发育密切相关。②研究区沙河子组烃源岩超压主要为煤层和富有机质泥岩的生烃增压作用,通常煤层生烃增压贡献率最大,富有机质泥岩次之,贫有机质泥岩超压较低,而生烃凹陷及周缘富有机质泥岩生烃增压贡献率高于煤层;凹陷区烃源岩生烃增压贡献率高于斜坡带和凸起区。③研究区沙河子组超压的演化可分为3个阶段,白垩纪早—中期为缓慢增压阶段,烃源岩因欠压实作用和缓慢生烃作用产生超压,经沙河子组—营城组沉积期活动性断裂和背斜传递至储层,储层超压缓慢增长;白垩纪晚期为快速增压阶段,烃源岩大量生气,生烃增压作用和欠压实作用产生的超压持续传递,储层超压快速升高,该阶段造成的储层超压占现今总超压的90%;古近纪早期至今为保持稳定阶段,构造稳定,烃源岩的生烃增压作用和欠压实作用稳定,超压基本保持不变,储层超压稳定增长。④研究区沙河子组不同岩性地层超压的差异性演化控制着天然气的分布,源、储过剩压力差为油气运移提供了动力条件,贫有机质泥岩盖层为下覆储层提供了封闭条件。

关键词: 超压, 生烃增压, 超压传递, 欠压实, 煤系烃源岩, 沙河子组, 白垩系, 徐家围子断陷, 松辽盆地

Abstract: Using the data of drilling,logging,pressure testing and analysis test,the current overpressure characteristics and the formation mechanism of overpressure of Cretaceous Shahezi Formation in Xujiaweizi fault depression of Songliao Basin were analyzed The overpressure evolution of source rocks with different structural units and different lithology is quantitatively restored by numerical simulation method,and the contribution of each overpressure to total overpressure is calculated. The results show that:(1)The present pressure of Cretaceous Shahezi Formation in Xujiaweizi fault depression are normal pressure-weak overpressure system, and the overpressure in the uplift is largest in the sag. Overpressure in the source rock is mainly driven by hydrocarbon generation and its second origin is undercompaction,while overpressure in the reservoir is the overpressure transfer effect from source rock overpressure,which is closely related to the formation and development of faults and anticlines.(2)The overpressure of source rocks in the Shahezi Formation in the study area is mainly caused by hydrocarbon generation of coal seam and organic-rich mudstone. Generally,the contribution ratio of hydrocarbon generation to total overpressure is the largest in coal seam,followed by organicrich mudstone,and organic-poor mudstone is lower,while the contribution ratio of hydrocarbon generation to total overpressure in the organic-rich mudstone is higher than that of coal seam in the sag and its periphery. The contribution ratio of hydrocarbon generation to total overpressure in the sag is higher than that in the slope zone and the uplift.(3)The evolution of overpressure in Shahezi Formation in the study area can be divided into three stages. The early to middle Cretaceous period is a slow pressurization stage. Overpressure was generated by undercompaction and slow hydrocarbon generation of source rocks,and was transmitted to the reservoir through active faults and anticline formation in Shahezi and Yingcheng formations,and overpressure in the reservoir increased slowly. The late Cretaceous period was a stage of rapid pressurization,with a large amount of gas generation in source rocks. In this stage,continuous transfer of overpressure caused by hydrocarbon generation and undercompaction make the overpressure in the reservoir be rapidly increased. The overpressure in the reservoir in this stage accounted for 90% of the total overpressure at present. The early Paleogene to the present is a stable stage. During this period,the tectonic is stable,overpressure induced by the hydrocarbon generatation and undercompaction in the source rock basically unchanged. Otherwise,the overpressure in the reservoir increases steadily. (4) The differential evolution of overpressure in different lithologic strata of Shahezi Formation in the study area controls the distribution of natural gas,overpressure difference between source and reservoir provides dynamic conditions for oil and gas migration,and the overpressure developed by organic-poor mudstone cap layer provides overpressure sealing conditions for the underlying reservoir.

Key words: overpressure, hydrocarbon-generating pressurization, overpressure transfer, undercompaction, coal-measure source rock, Shahezi Formation, Cretaceous, Xujiaweizi Fault Depression, Songliao Basin

中图分类号: 

  • TE122.2
[1] 张大智,张晓东,杨步增. 徐家围子断陷沙河子组致密气地质甜点综合评价[J]. 岩性油气藏,2015,27(5):98-103. ZHANG Dazhi,ZHANG Xiaodong,YANG Buzeng. Comprehensive evaluation of geological sweet point of tight gas of Shahezi Formation in Xujiaweizi fault depression[J]. Lithologic Reservoirs,2015,27(5):98-103.
[2] 杜长鹏. 松辽盆地莺山-双城断陷白垩系致密火山岩天然气成藏条件及主控因素[J]. 岩性油气藏,2023,35(4):115-124. DU Changpeng. Natural gas accumulation conditions and main controlling factors of Cretaceous tight volcanic rocks in YingshanShuangcheng fault depression,Songliao Basin[J]. Lithologic Reservoirs,2023,35(4):115-124.
[3] 张大智,初丽兰,李鑫,等. 断陷盆地致密砂砾岩储层甜点综合评价及勘探成效:以松辽盆地北部徐家围子断陷下白垩统沙河子组为例[J]. 中国石油勘探,2022,27(5):73-82. ZHANG Dazhi,CHU Lilan,LI Xin,et al. Comprehensive sweet point evaluation and exploration results of tight glutenite reservoir in fault basin:A case study of the Lower Cretaceous Shahezi Formation in Xujiaweizi fault depression in the northern Songliao Basin[J]. China Petroleum Exploration,2022,27(5):73-82.
[4] LIU Yuku,HE Zhiliang,HE Sheng,et al. A new quantitative model and application for overpressure prediction in carbonate formation[J]. Journal of Petroleum Science and Engineering, 2021,198:108145.
[5] 付广,张超群. 气源断裂与盖层时空匹配关系及对天然气成藏的控制作用:以徐家围子断陷为例[J]. 岩性油气藏,2013, 25(1):51-55. FU Guang,ZHANG Chaoqun. Time and space matching relation between gas source faults and cap rocks and its controlling action on gas accumulation:An example from Xujiaweizi depression[J]. Lithologic Reservoirs,2013,25(1):51-55.
[6] 吴玉明,闫伟贺,云建兵,等. 徐家围子断陷气藏成藏过程及成藏压力研究[J]. 西部探矿工程,2021,33(3):23-27. WU Yuming,YAN Weihe,YUN Jianbing,et al. Study on the process and pressure of Xujiaweizi fault depression[J]. WestChina Exploration Engineering,2021,33(3):23-27.
[7] 鲁雪松,张凤奇,赵孟军,等. 准噶尔盆地南缘高探1井超压成因与盖层封闭能力[J]. 新疆石油地质,2021,42(6):666675. LU Xuesong,ZHANG Fengqi,ZHAO Mengjun,et al. Genesis of overpressure and sealing ability of caprocks in Well Gaotan 1 in the southern margin of Junggar Basin[J]. Xinjiang Petroleum Geology,2021,42(6):666-675.
[8] 李继亭,曾溅辉,吴嘉鹏. 利用东营凹陷典型剖面分析地层压力演化与油气成藏关系[J]. 岩性油气藏,2011,23(4):58-64. LI Jiting,ZENG Jianhui,WU Jiapeng. Application of typical profile to analysis of reservoir pressure evolution and hydrocarbon accumulation in Dongying Sag[J]. Lithologic Reservoirs, 2011,23(4):58-64.
[9] 汪旭东,查明,曲江秀,等. 东营凹陷古近系超压封闭层特征及其封盖能力研究[J]. 岩性油气藏,2012,24(5):76-82. WANG Xudong,ZHA Ming,QU Jiangxiu et al. Study on characteristics of the Paleocene overpressure seal and its sealing ability in Dongying Depression[J]. Lithologic Reservoirs,2012, 24(5):76-82.
[10] 刘文龙,李思田,孙德君,等. 松辽盆地深层孔隙流体压力预测[J]. 地球科学(中国地质大学学报),2000,25(2):137-142. LIU Wenlong,LI Sitian,SUN Dejun,et al. Prediction of pore-fluid pressure in deep strata of Songliao Basin[J]. Earth ScienceJournal of China University of Geosciences,2000,25(2):137142.
[11] 狄嘉祥,刘文龙,吴世环. 徐家围子断陷徐南地区气藏超压成因[J]. 天然气工业,2009,29(8):42-43. DI Jiaxiang,LIU Wenlong,WU Shihuan. The causes of overpressure in the gas reservoirs in southern area of Xujiaweizi fault depression[J]. Natural Gas Industry,2009,29(8):42-43.
[12] LI Wei,CHEN Zhuxin,HUANG Pinghui,et al. Formation of overpressure system and its relationship with the distribution of large gas fields in typical foreland basins in central and western China[J]. Petroleum Exploration and Development,2021, 48(3):625-640.
[13] 赵春娟,徐淑娟,程宏岗,等. 松辽盆地徐家围子断陷沙河子组沉积相类型及演化模式[J]. 沉积学报,2024,42(4):1460-1478. ZHAO Chunjuan,XU Shujuan,CHENG Honggang,et al. Sedimentary facies types and evolution models of the Shahezi Formation in the Xujiaweizi Fault Depression,Songliao Basin[J]. Acta Sedimentologica Sinica,2024,42(4):1460-1478.
[14] 孟张勇. 松辽盆地石炭-二叠系构造热演化特征[D]. 西安:西北大学,2022. MENG Zhangyong. Characteristics of tectono-thermal evolution of Carboniferous-Permian in Songliao Basin[D]. Xi'an:Northwestern University,2022.
[15] 蔡全升,胡明毅,陈孝红,等. 小型断陷湖盆扇三角洲沉积特征与发育模式:以徐家围子断陷北部沙河子组为例[J]. 岩性油气藏,2018,30(1):86-96. CAI Quansheng,HU Mingyi,CHEN Xiaohong,et al. Sedimentary characteristics and development model of fan delta in small faulted basin:A case of Shahezi Formation in northern Xujiaweizi Fault Depression,NE China[J]. Lithologic Reservoirs,2018,30(1):86-96.
[16] 郝芳. 超压盆地生烃作用动力学与油气成藏机理[M]. 北京:科学出版社,200:3-6. HAO Fang. Kinetics of hydrocarbon generation and hydrocarbon mechanism in overpressure basin[M]. Beijing:Science Press,200:3-6.
[17] 赵仁文,肖佃师,卢双舫,等. 高-过成熟陆相断陷盆地页岩与海相页岩储层特征对比:以徐家围子断陷沙河子组和四川盆地龙马溪组为例[J]. 油气藏评价与开发,2023,13(1):52-63. ZHAO Renwen,XIAO Dianshi,LU Shuangfang,et al. Comparison of reservoir characteristics between continental shale from faulted basin and marine shale under high-over mature stage:Taking Shahezi Formation in Xujiaweizi faulted basin and Longmaxi Formation in Sichuan Basin as an example[J]. Petroleum Reservoir Evaluation and Development,2023,13(1):52-63.
[18] TINGAY M,HILLIS R R,SWARBRICK R E,et al. Origin of overpressure and pore-pressure prediction in the Baram province,Brunei[J]. AAPG Bulletin,2009,93(1):51-74.
[19] TINGAY M P Y,MORLEY C K,LAIRD A,et al. Evidence for overpressure generation by kerogen-to-gas maturation in the northern Malay Basin[J]. AAPG Bulletin,2013,97(4):639672.
[20] OSBORNE M J,SWARBRICK R E. Mechanisms for generating overpressure in sedimentary basins:A reevaluation[J]. AAPG Bulletin,1997,81(6):1023-1041.
[21] 何玉,周星,李少轩,等. 渤海湾盆地渤中凹陷古近系地层超压成因及测井响应特征[J]. 岩性油气藏,2022,34(3):60-69. HE Yu,ZHOU Xing,LI Shaoxuan,et al. Genesis and logging response characteristics of formation overpressure of Paleogene in Bozhong Sag,Bohai Bay Basin[J]. Lithologic Reservoirs, 2022,34(3):60-69.
[22] 张凤奇,王震亮,钟红利,等. 沉积盆地主要超压成因机制识别模式及贡献[J]. 天然气地球科学,2013,24(6):1151-1158. ZHANG Fengqi,WANG Zhenliang,ZHONG Hongli,et al. Recognition Model and Contribution Evaluation of Main Overpressure Formation Mechanisms in Sedimentary Basins[J]. Natural Gas Geoscience,2013,24(6):1151-1158.
[23] 张凤奇,鲁雪松,卓勤功,等. 准噶尔盆地南缘下组合储层异常高压成因机制及演化特征[J]. 石油与天然气地质,2020, 41(5):1004-1016. ZHANG Fengqi,LU Xuesong,ZHUO Qingong,et al. Genetic mechanism and evolution characteristics of overpressure in the lower play at the southern margin of the Junggar Basin,northwestern China[J]. Oil & Gas Geology,2020,41(5):1004-1016.
[24] 周鹏高. 欠压实作用下地层异常压力定量评价方法及应用[J]. 特种油气藏,2023,30(6):23-30. ZHOU Penggao. Quantitative evaluation method of anomalous formation pressure under the effect of undercompaction and its application[J]. Special Oil & Gas Reservoirs,2023,30(6):23-30.
[25] 王志宏,郝翠果,李建明,等. 川西前陆盆地超压分布及成因机制[J]. 岩性油气藏,2019,31(6):36-43. WANG Zhihong,HAO Cuiguo,LI Jianming,et al. Distribution and genetic mechanism of overpressure in western Sichuan foreland basin[J]. Lithologic Reservoirs,2019,31(6):36-43.
[26] 刘金水,张国栋,刘云. 西湖凹陷A洼陷异常高压封存箱成因机制与控藏作用[J]. 中国海上油气,2023,35(3):25-33. LIU Jinshui,ZHANG Guodong,LIU Yun. Origin mechanism of abnormal high-pressure compartment in A sub-sag of Xihu sag and its controlling effect on reservoir formation[J]. China Offshore Oil and Gas,2023,35(3):25-33.
[27] 张国华. 西湖凹陷高压形成机制及其对油气成藏的影响[J]. 中国海上油气,2013,25(2):1-8. ZHANG Guohua. Origin mechanism of high formation pressure and its influence on hydrocarbon accumulation in Xihu sag[J]. China Offshore Oil and Gas,2013,25(2):1-8.
[28] BOWERS G L. Detecting high overpressure[J]. The Leading Eage,2002,21(2):174-177.
[29] MEISSNER F F. Petroleumgeology of the Bakken Formation, Williston Basin,North Dakota and Montana[J]. AAPG Special Volumes,1984:159-179.
[30] 李景坤,冯子辉,刘伟,等. 松辽盆地徐家围子断陷深层天然气成藏期研究[J]. 石油学报,2006,27(增刊1):42-46. LI Jingkun,FENG Zihui,LIU Wei,et al. Research on reservoirforming time of deep natural gas in Xujiaweizi faulteddepression in Songliao Basin[J]. Acta Petrolei Sinica,2006,27(Suppl 1):42-46.
[31] 刘桃,刘景东. 欠压实与流体膨胀成因超压的定量评价[J]. 石油学报,2018,39(9):971-979. LIU Tao,LIU Jingdong. Quantitative evaluation on overpressure generated from undercompaction and fluid expansion[J]. Acta Petrolei Sinica,2018,39(9):971-979.
[32] 张功成,徐宏,刘和甫,等. 松辽盆地反转构造与油气田分布[J]. 石油学报,1996,17(2):9-14. ZHANG Gongcheng,XU Hong,LIU Hefu,et al. Inversion structures in relation to oil and gas fifld distribution in Songliao Basin[J]. Acta Petrolei Sinica,1996,17(2):9-14.
[33] 孙永河,陈艺博,孙继刚,等. 松辽盆地北部断裂演化序列与反转构造带形成机制[J]. 石油勘探与开发,2013,40(3):275-283. SUN Yonghe,CHEN Yibo,SUN Jigang,et al. Evolutionary sequence of faults and the formation of inversion structural belts in the northern Songliao Basin[J]. Petroleum Exploration and Development,2013,40(3):275-283.
[34] 张美华,王春华,栾颖. 松辽盆地伏龙泉断陷边界断层构造反转率[J]. 石油与天然气地质,2019,40(2):413-422. ZHANG Meihua,WANG Chunhua,LUAN Ying. Inverted rate of boundary faults along Fulongquan fault depression,Songliao Basin[J]. Oil & Gas Geology,2019,40(2):413-422.
[35] 刘志宏,宋健,刘希雯,等. 松辽盆地南部白垩纪-古近纪挤压构造的发现与盆地性质探讨[J]. 岩石学报,2020,36(8):2383-2393. LIU Zhihong,SONG Jian,LIU Xiwen,et al. Discovery of the Cretaceous-Paleogene compressional structure and basin properties of the southern Songliao Basin[J]. Acta Petrologica Sinica,2020,36(8):2383-2393.
[36] HANTSCHEL T,KAUERAUF A. Fundamentals of basin and petroleum systems modeling[M]. Dordrecht:Springer,2009:1-136.
[37] 李儒峰,杨永强,张刚雄,等. 松辽北部徐家围子白垩系不整合剥蚀量系统恢复[J]. 地球科学(中国地质大学学报), 2012,37(增刊2):47-54. LI Rufeng,YANG Yongqiang,ZHANG Gangxiong,et al. Systematic Restoration of Eroded Thickness by Unconformity in Cretaceous of Xujiaweizi in the North of Songliao Basin[J]. Earth Science-Journal of China University of Geosciences, 2012,37(Suppl 2):47-54.
[38] 张大智,初丽兰,李鑫,等. 断陷盆地致密砂砾岩储层甜点综合评价及勘探成效:以松辽盆地北部徐家围子断陷下白垩统沙河子组为例[J]. 中国石油勘探,2022,27(5):73-82. ZHANG Dazhi,CHU Lilan,LI Xin,et al. Comprehensive sweet point evaluation and exploration results of tight glutenite reservoir in fault basin:a case study of the Lower Cretaceous Shahezi Formation in Xujiaweizi Fault Depression in the northern Songliao Basin[J]. China Petroleum Exploration,2022,27(5):73-82.
[39] SWEENEY J J,BURNHAM A K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J]. AAPG Bulletin,1990,74(10):1559-1570.
[40] 王震亮,罗晓容,陈荷立. 沉积盆地地下古水动力场恢复:原理与方法[J]. 西北大学学报(自然科学版),1997,27(2):67-71. WANG Zhenliang,LUO Xiaorong,CHEN Heli. Rebuilding of Palaeohydrodynamic Field in Sedimentary Basin:Principle and Means[J]. Journal of Northwest University(Natural Science Edition),1997,27(2):67-71.
[41] 郭小文,何生,刘可禹,等. 烃源岩生气增压定量评价模型及影响因素[J]. 地球科学(中国地质大学学报),2013,38(6):1263-1270. GUO Xiaowen,HE Sheng,LIU Keyu,et al. A quantitative estimation model for the overpressure caused by natural gas generation and its influential factors[J]. Earth Science-Journal of China University of Geosciences,2013,38(6):1263-1270.
[42] 郭小文,何生,郑伦举,等. 生油增压定量模型及影响因素[J]. 石油学报,2011,32(4):637-644. GUO Xiaowen,HE Sheng,ZHENG Lunju,et al. A quantitative model for the overpressure caused by oil generation and its influential factors[J]. Acta Petrolei Sinica,2011,32(4):637-644.
[43] 申家年,王庆红,何江林,等. 松辽盆地白垩纪湖泊水体温度与古气候温度估算[J]. 吉林大学学报(地球科学版),2008, 38(6):946-952. SHEN Jianian,WANG Qinghong,HE Jianglin,et al. Estimation of the ancient lake temperature and Paleo-climate of the Cretaceous period in the Songliao Basin[J]. Journal of Jilin University(Earth Science Edition),2008,38(6):946-952.
[44] 张世奇,任延广. 松辽盆地中生代沉积基准面变化研究[J]. 长安大学学报(地球科学版),2003,25(2):1-5. ZHANG Shiqi,REN Yanguang. The study of base level changes of the Songliao Basin in Mesozoic[J]. Journal of Chang'an University(Earth Sciences and Edition),2003,25(2):1-5.
[45] 李兴伟. 松辽盆地北部大庆长垣埋藏史、热史模拟[J]. 大庆石油地质与开发,2015,34(1):46-50. LI Xingwei. Numerical simulations of the burial & thermal histories for Daqing placanticline in north Songliao Basin[J]. Petroleum Geology & Oilfield Development,2015,34(1):46-50.
[46] 施立志,祁越,张永生,等. 松辽盆地齐家地区"四史"模拟及其地质意义研究[J]. 地质与勘探,2019,55(2):661-672. SHI Lizhi,QI Yue,ZHANG Yongsheng,et al. Numerical simulation of geohistory of the Qijia area in the Songliao Basin and geological significance[J]. Geology and Exploration,2019,55(2):661-672.
[47] 李志安. 松辽盆地地幔热流的演化特征[J]. 大地构造与成矿学,1995,19(2):104-112. LI Zhian. Evolutionary features of mantle heat flux in the Songliao Basin[J]. Geotectonica et Metallogenia,1995,19(2):104-112.
[48] 刘超. 徐家围子断陷沙河子组致密气生储盖条件及成藏特征研究[D]. 大庆:东北石油大学,2015. LIU Chao. Research on the source-reservoir-cap conditions and tight gas accumulation rule in Shahezi group of Xujiaweizi fault depression[D]. Daqing:Northeast Petroleum University, 2015.
[49] 孙龙德,邹才能,贾爱林,等. 中国致密油气发展特征与方向[J]. 石油勘探与开发,2019,46(6):1015-1026. SUN Longde,ZOU Caineng,JIA Ailin,et al. Development characteristics and orientation of tight oil and gas in China[J]. Petroleum Exploration and Development,2019,46(6):10151026.
[50] 卢双舫,谷美维,张飞飞,等. 徐家围子断陷沙河子组致密砂砾岩气藏的成藏期次及类型划分[J]. 天然气工业,2017,37(6):12-21. LU Shuangfang,GU Meiwei,ZHANG Feifei,et al. Hydrocarbon accumulation stages and type division of Shahezi Fm tight glutenite gas reservoirs in the Xujiaweizi Fault Depression, Songliao Basin[J]. Natural Gas Industry,2017,37(6):12-21.
[51] 陆洪滨. 徐家围子深部构造特征与非生物成因天然气研究[D]. 大庆:东北石油大学,2012. LU Hongbin. The area of Xujiaweizi deep structural characteristics and abiogenic gas research[D]. Daqing:Northeast Petroleum University,2012.
[1] 何星, 金玮, 张帆, 霍秋立, 李跃, 鲍俊驰, 刘璐, 曾庆兵. 海拉尔盆地乌尔逊凹陷白垩系铜钵庙组原油地球化学特征及来源[J]. 岩性油气藏, 2025, 37(1): 41-52.
[2] 卫欢, 单长安, 朱松柏, 黄钟新, 刘汉广, 朱兵, 吴长涛. 库车坳陷克深地区白垩系巴什基奇克组致密砂岩裂缝发育特征及地质意义[J]. 岩性油气藏, 2025, 37(1): 149-160.
[3] 冉逸轩, 王健, 张熠. 松辽盆地北部中央古隆起基岩气藏形成条件与有利勘探区[J]. 岩性油气藏, 2024, 36(6): 66-76.
[4] 屈卫华, 田野, 董常春, 郭小波, 李立立, 林斯雅, 薛松, 杨世和. 松辽盆地德惠断陷白垩系烃源岩特征及其控藏作用[J]. 岩性油气藏, 2024, 36(6): 122-134.
[5] 肖博雅. 二连盆地阿南凹陷白垩系凝灰岩类储层特征及有利区分布[J]. 岩性油气藏, 2024, 36(6): 135-148.
[6] 王洪星, 韩诗文, 胡佳, 潘志浩. 松辽盆地德惠断陷白垩系火石岭组凝灰岩储层预测及成藏主控因素[J]. 岩性油气藏, 2024, 36(5): 35-45.
[7] 魏成林, 张凤奇, 江青春, 鲁雪松, 刘刚, 卫延召, 李树博, 蒋文龙. 准噶尔盆地阜康凹陷东部深层二叠系超压形成机制及演化特征[J]. 岩性油气藏, 2024, 36(5): 167-177.
[8] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[9] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[10] 周洪锋, 吴海红, 杨禹希, 向红英, 高吉宏, 贺昊文, 赵旭. 二连盆地巴音都兰凹陷B51井区白垩系阿四段扇三角洲前缘沉积特征[J]. 岩性油气藏, 2024, 36(4): 85-97.
[11] 何文渊, 赵莹, 钟建华, 孙宁亮. 松辽盆地古龙凹陷白垩系青山口组页岩油储层中微米孔缝特征及油气意义[J]. 岩性油气藏, 2024, 36(3): 1-18.
[12] 史卜庆, 丁梁波, 马宏霞, 孙辉, 张颖, 许小勇, 王红平, 范国章. 东非海域大型深水沉积体系及油气成藏特征[J]. 岩性油气藏, 2023, 35(6): 10-17.
[13] 马文杰, 王景春, 田作基, 马中振, 万学鹏, 林金逞, 许翔麟, 周玉冰. 南美洲Oriente盆地斜坡带W区块构造-岩性复合油藏成藏模式及有利区预测[J]. 岩性油气藏, 2023, 35(6): 29-36.
[14] 罗贝维, 尹继全, 胡广成, 陈华, 康敬程, 肖萌, 朱秋影, 段海岗. 阿联酋西部地区白垩系森诺曼阶高孔渗灰岩储层特征及控制因素[J]. 岩性油气藏, 2023, 35(6): 63-71.
[15] 范蕊, 刘卉, 杨沛广, 孙星, 马辉, 郝菲, 张珊珊. 阿曼盆地A区白垩系泥岩充填型碳酸盐岩溶蚀沟谷识别技术[J]. 岩性油气藏, 2023, 35(6): 72-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!