岩性油气藏 ›› 2025, Vol. 37 ›› Issue (4): 192–200.doi: 10.12108/yxyqc.20250418

• 石油工程与油气田开发 • 上一篇    

强水敏致密砾岩储层压裂液侵入伤害实验

刘赛1,2,3, 娄清香1,2,3, 刘雯雯1,2,3, 魏云1,2,3, 周浩1,2,3, 时凤1,2,3   

  1. 1. 中国石油砾岩油气藏勘探开发重点实验室, 新疆 克拉玛依 834000;
    2. 新疆维吾尔自治区砾岩油藏重点实验室, 新疆 克拉玛依 834000;
    3. 中国石油新疆油田公司 勘探开发研究院, 新疆 克拉玛依 834000
  • 收稿日期:2024-07-29 修回日期:2024-09-27 发布日期:2025-07-05
  • 第一作者:刘赛(1989-),女,硕士,高级工程师,主要从事油气田开发方面的研究工作。地址:(834000)新疆维吾尔自治区克拉玛依市克拉玛依区准噶尔路29号实验检测研究院。Email:826864729@qq.com。
  • 基金资助:
    新疆维吾尔自治区重点实验室开放性课题“致密砾岩油藏CO2驱提高采收率与埋存机理实验研究”(编号:2020D04045)资助。

Experiment on damage of fracturing fluid in strong water-sensitive tight conglomerate reservoir

LIU Sai1,2,3, LOU Qingxiang1,2,3, LIU Wenwen1,2,3, WEI Yun1,2,3, ZHOU Hao1,2,3, SHI Feng1,2,3   

  1. 1. Key Laboratory of Conglomerate Reservoir Exploration and Development, CNPC, Karamay 834000, Xinjiang, China;
    2. Xinjiang Key Laboratory of Petroleum Reservoir in Conglomerate, Karamay 834000, Xinjiang, China;
    3. Research Institute of Exploration and Development, PetroChina Xinjiang Oilfield Company, Karamay 834000, Xinjiang, China
  • Received:2024-07-29 Revised:2024-09-27 Published:2025-07-05

摘要: 通过长岩心、常规岩心驱替实验与核磁共振相结合的联测方式对强水敏致密砂砾岩储层液阻伤害距离、影响因素及压裂液侵入地层后储层伤害规律进行了研究,并建立了可对液阻伤害程度进行定量预测的多元非线性回归预测模型。研究结果表明:①储层物性对液阻伤害距离起决定性作用,渗透率越小液阻伤害距离越小,越容易导致储层伤害,渗透率相当时,含砾粗砂岩岩心比含砾细砂岩岩心更容易产生液阻伤害,但差距较小,压裂液侵入地层后具有明显的“三带”特征,即压入液阻带、渗吸液阻带、原始地层带,其中“压入液阻带”是控制液阻伤害程度的主要因素。②物性、岩性及膨胀性黏土矿物含量共同控制了致密砾岩储层液阻伤害时变性的判值,同类复模态砂砾岩岩心渗透率越小,液阻伤害时变性判值越接近1,双模态含砾粗砂岩岩心初期液阻伤害率较高,焖井后缓解,双模态含砾细砂岩岩心初期损害率较低,焖井后升高,黏土矿物含量较高的岩心损害率时变性向1靠近。③液阻伤害程度与孔隙度、渗透率、黏土矿物含量的多元非线性回归预测模型的准确率大于80%,当油田勘探开发过程中缺少岩心样品或难以进行室内驱替模拟实验时,该模型可进行液阻伤害程度的定量预测。

关键词: 强水敏致密砾岩, 压裂液侵入, 液阻伤害, 物性, 岩性, 黏土矿物含量, 岩心驱替实验, 核磁共振实验, 定量预测模型

Abstract: The distance and influencing factors of fluid resistance damage in strong water sensitive tight glutenite reservoirs,as well as the reservoir damage pattern after fracturing fluid invasion,were simulated and studied through a combined measurement method of long core,conventional core displacement experiments,and nuclear magnetic resonance. Based on the experiment,a multivariate nonlinear regression prediction model was established to quantitatively predict the degree of fluid resistance damage. The results show that: (1)Reservoir properties play a decisive role in the distance of liquid resistance damage. The lower the permeability,the smaller the distance of liquid resistance damage,and the more likely it is to cause reservoir damage. When the permeability is the same,gravel bearing coarse sandstone cores are more prone to liquid resistance damage than gravel bearing fine sandstone cores,but the difference is small. After fracturing fluid invades the formation,it has obvious“three zones”characteristics,such as“pressing into the liquid resistance zone”, “imbibition resistance zone”,and“original stratigraphic zone”. And“pressing into the liquid resistance zone”is the main factor controlling the degree of liquid resistance damage.(2)The physical properties,lithology,and content of expansive clay minerals together constitute threshold that determines the variability of liquid resistance damage in tight conglomerate reservoirs. The lower the permeability of similar multimodal sandstone cores,the closer the variability threshold of liquid resistance damage is near 1. The initial liquid resistance damage rate of bimodal gravel coarse sandstone cores is higher,which is relieved after soaking,and the initial damage rate of bimodal gravel fine sandstone cores is lower,which increases after soaking. The damage rate of cores with higher clay mineral content tends to shift towards 1.(3)The accuracy of the established multiple nonlinear regression prediction model for the degree of liquid resistance damage and porosity,permeability,and clay mineral content is greater than 80%,this model can be used for quantitative prediction of the degree of liquid resistance damage in oilfield exploration and development processes when there is a lack of core samples or when indoor displacement simulation experiments are difficult to conduct.

Key words: strong water sensitive dense conglomerate, fracturing fluid intrusion, fluid resistance damage, physical properties, lithology, content of clay minerals, core displacement experiments, nuclear magnetic resonance test, quantitative prediction model

中图分类号: 

  • TE311
[1] 赵杏媛,何东博.黏土矿物与油气勘探开发[M].北京:石油工业出版社,2016:122-162.ZHAO Xingyuan,HE Dongbo.Clay minerals and oil and gas exploration and development[M].Beijing:Petroleum Industry Press,2016:122-162.
[2] 徐豪飞,马宏伟,尹相荣,等.新疆油田超低渗透油藏注水开发储层损害研究[J].岩性油气藏,2013,25(2):100-106.XU Haofei,MA Hongwei,YIN Xiangrong,et al.Study on reservoir damage in water injection development of ultra low permeability reservoirs in Xinjiang Oilfield[J].Lithologic Reservoirs,2013,25(2):100-106.
[3] 宋雨纯,黄昊,周创飞,等.姬塬油田麻黄山地区长4+5和长6储集层敏感性差异评价[J].新疆石油地质,2022,43(5):546-553.SONG Yuchun,HUANG Hao,ZHOU Chuangfei,et al.Sensitivity difference evaluation of Chang 4+5 and Chang 6 reservoirs in Ma Mount Huangshan area of Jiyuan oilfield[J].Xinjiang Petroleum Geology,2022,43(5):546-553.
[4] 油田化学剂专业标准化技术委员会.油气田压裂酸化及注水用黏土稳定剂性能评价方法:SY/T 5971-2016[S].北京:中国石油化工股份有限公司胜利油田分公司采油工艺研究院,2016.Standardization Technical Committee for Oilfield Chemicals.The performance evaluation method of clay stabilizer for fracturing,acidizing and water injection in oil and gas fields:SY/T 5971-2016[S].Beijing:Sinopec Shengli Oilfield Branch Oil Production Technology Research Institute,2016.
[5] 能源行业煤层气标准化技术委员会.钻井液完井液对煤层气储层损害室内评价方法:NB/T 10030-2016[S].北京:中国石油集团钻井工程技术研究院,2017.Standardization technical committee for coalbed methane in the energy industry.Lab-evaluation method for drilling and completion fluid damage to CBM reservoirs:NB/T 10030-2016[S].Beijing:China Petroleum Drilling Engineering Technology Research Institute,2017.
[6] 王剑,马聪,罗正江,等.准噶尔盆地阜东斜坡韭菜园子组储集层特征及敏感性[J].新疆石油地质,2021,42(1):38-45.WANG Jian,MA Cong,LUO Zhengjiang,et al.Reservoir Characteristics and Sensitivity of Jiucaiyuanzi Formation in Fudong Slope of the Junggar Basin[J].Xinjiang Petroleum Geology,2021,42(1):38-45.
[7] 刘京,刘彝,宋显民,等.低浓度瓜胶压裂液储层损害特征及评价方法[J].中国矿业,2021,30(增刊2):304-309.LIU Jing,LIU Yi,SONG Xianmin,et al.Reservoir damage characteristics and evaluation method of low concentration guar gum fracturing fluid[J].China Mining Magazine,2021,30(Suppl 2):304-309.
[8] 何金钢,康毅力,游利军,等.特低渗透砂岩油藏压裂液损害实验评价[J].油田化学,2013,30(2):173-178.HE Jingang,KANG Yili,YOU Lijun,et al.Experimental evaluation of fracturing fluid damage in ultra-low permeability sandstone reservoir[J].Oilfield Chemistry,2013,30(2):173-178.
[9] 刘峥君,李爱芬,周永强,等.安棚深层系致密砂岩孔隙结构与渗透性关系的核磁共振试验研究[J].科学技术与工程,2018,18(21):48-55.LIU Zhengjun,LI Aifen,ZHOU Yongqiang,et al.NMR experimental study on the relationship between pore structure and permeability of tight sandstone in Anpeng deep system[J].Science Technology and Engineering,2018,18(21):48-55.
[10] 王海军,邓媛,段春节,等.大牛地气田储层伤害研究[J].岩性油气藏,2010,22(4):125-129.WANG Haijun,DENG Yuan,DUAN Chunjie,et al.Study on reservoir damage in daniudi gas field[J].Lithologic Reservoirs,2010,22(4):125-129.
[11] 王明磊,张遂安,关辉,等.致密油储层特点与压裂液伤害的关系:以鄂尔多斯盆地三叠系延长组长7段为例[J].石油与天然气地质,2015,36(5):848-854.WANG Minglei,ZHANG Suian,GUAN Hui,et al.Relationship between tight oil reservoir characteristics and fracturing fluid damage:Taking Chang-7 member of Yanchang Formation of Triassic System in Ordos Basin as an example[J].Oil & Gas Geology,2015,36(5):848-854.
[12] 雷茹,任晓娟.低渗透砂岩气藏水锁伤害方式对比实验研究[J].岩性油气藏,2008,20(3):124-127.LEI Ru,REN Xiaojuan.Comparative experimental study on water lock damage modes in low permeability sandstone gas reservoirs[J].Lithologic Reservoirs,2008,20(3):124-127.
[13] 李云,祁利褀,胡作维,等.准噶尔盆地阜东斜坡中侏罗统头屯河组储层敏感性特征[J].岩性油气藏,2014,26(1):52-57.LI Yun,QI Liqi,HU Zuowei,et al.Reservoir sensitivity characteristics of middle Jurassic Toutunhe Formation in Fudong Slope of the Junggar Basin[J].Lithologic Reservoirs,2014,26(1):52-57.
[14] 周伟,沈秀伦,寇根,等.准噶尔盆地玛南地区上乌尔禾组储集层伤害机理[J].新疆石油地质,2022,43(1):107-114.ZHOU Wei,SHEN Xiulun,KOU Gen,et al.Reservoir damage mechanism of Upper Wuerhe Formation in Manan area of the Junggar Basin[J].Xinjiang Petroleum Geology,2022,43(1):107-114.
[15] 印森林,陈恭洋,陈玉琨,等.砂砾岩储层孔隙结构复杂模态差异机制[J].西南石油大学学报(自然科学版),2019,41(1):1-17.YIN Senlin,CHEN Gongyang,CHEN Yukun,et al.Mechanism of complex modal differences in pore structure of gravel reservoirs[J].Journal of Southwest Petroleum University(Science & Technology Edition),2019,41(1):1-17.
[16] 徐会林,王新海,魏少波,等.四川盆地高石梯-磨溪区块震旦系储层敏感性实验评价[J].岩性油气藏,2015,27(2):13-17.XU Huilin,WANG Xinhai,WEI Shaobo,et al.Sensitivity experimental evaluation of Sinian reservoir in Gaoshiti Moxi Block,Sichuan Basin[J].Lithologic Reservoirs,2015,27(2):13-17.
[17] 唐洪明,龚小平,唐浩轩,等.页岩敏感性损害评价方法及损害机理[J].中南大学学报(自然科学版),2016,47(4):1227-1236.TANG Hongming,GONG Xiaoping,TANG haoxuan,et al.Shale sensitivity damage evaluation method and damage mechanism[J].Journal of Central South University(Science and Technology),2016,47(4):1227-1236.
[18] 杜洋,雷炜,李莉,等.页岩气井压裂后焖排模式[J].岩性油气藏,2019,31(3):145-151.DU Yang,LEI Wei,LI Li,et al.Stewed discharge mode after shale gas well fracturing[J].Lithologic Reservoirs,2019,31(3):145-151.
[19] 何辉,李军建,乞照,等.西峰油田N区长23储集层特征及敏感性评价[J].新疆石油地质,2020,41(3):278-287.HE Hui,LI Junjian,QI Zhao,et al.Characteristics and sensitivity evaluation of reservoir chang 23 in Xifeng Oilfield[J].Xinjiang Petroleum Geology,2020,41(3):278-287.
[20] 陈丽华.强水敏储层矿物高温变化对储层物性的影响:以金家油田沙一段为例[J].岩性油气藏,2016,28(4):121-126.CHEN Lihua.The influence of high temperature changes in minerals in strong water sensitive reservoirs on reservoir properties:A case study of Sha 1 member in Jinjia Oilfield[J].Lithologic Reservoirs,2016,28(4):121-126.
[21] 熊山,王学生,张遂,等.WXS油藏长期水驱储层物性参数变化规律[J].岩性油气藏,2019,31(3):120-129.XIONG Shan,WANG Xuesheng,ZHANG Sui,et al.The variation law of long-term water flooding reservoir physical properties parameters in WXS reservoir[J].Lithologic Reservoirs,2019,31(3):120-129.
[22] 巨明霜,王秀宇,余文帅,等.基于核磁共振技术的致密储集层静态渗吸规律[J].新疆石油地质,2019,40(3):334-339.JU Mingshuang,WANG Xiuyu,YU Wenshuai,et al.Static imbibition law of tight reservoirs based on nuclear magnetic resonance technology[J].Xinjiang Petroleum Geology,2019,40(3):334-339.
[23] 欧阳传湘,邓志颖,张伟.轮古7井区三叠系砂岩储层黏土矿物特征及敏感性损害研究[J].岩性油气藏,2011,23(5):111-114.OUYANG Chuanxiang,DENG Zhiying,ZHANG Wei.Research on the characteristics and sensitivity damage of clay minerals in triassic sandstone reservoirs in the Lungu 7 well area[J].Lithologic Reservoirs,2011,23(5):111-114.
[24] 刘博峰,张庆九,陈鑫,等.致密油储层压裂液渗吸特征及水锁损害评价[J].断块油气田,2021,28(3):318-322.LIU Bofeng,ZHANG Qingjiu,CHEN Xin,et al.Imbibition characteristics of fracturing fluid in tight oil reservoir and evaluation of water lock damage[J].Fault-Block Oil & Gas Field,2021,28(3):318-322.
[25] 张军,孟英峰,李皋,等.裂缝-孔隙型双重介质储层保护技术研究与探讨[J].天然气勘探与开发,2006,29(3):46-50.ZHANG Jun,MENG Yingfeng,LI Hao,et al.Research and discussion on the protection technology of fracture pore dual media reservoirs[J].Natural Gas Exploration and Development,2006,29(3):46-50.
[26] 张智勇,程兴生,李永平,等.压裂液对致密油储层伤害评价实验研究[J].中国矿业,2018,27(增刊1):404-406.ZHANG Zhiyong,CHENG Xingsheng,LI Yongping,et al.Experimental study on damage evaluation of fracturing fluid to tight oil reservoir[J].China Mining Magazine,2018,27(Suppl 1):404-406.
[27] 张鹏,吴通,李中,等.BP神经网络法预测顺北超深碳酸盐岩储层应力敏感程度[J].石油钻采工艺,2020,42(5):622-626.ZHANG Peng,WU Tong,LI Zhong,et al.Prediction of stress sensitivity of Shunbei ultra deep carbonate reservoir by BP neural network method[J].Oil Drilling & Production Technology,2020,42(5):622-626.
[28] 彭达,肖富森,冉崎,等.基于KT模型流体替换的岩石物理参数反演方法[J].岩性油气藏,2018,30(5):82-90.PENG Da,XIAO Fusen,RAN Qi,et al.A rock physics parameter inversion method based on KT model fluid replacement[J].Lithologic Reservoirs,2018,30(5):82-90.
[1] 尹照普, 朱峰, 周志尧, 王丽丽, 刘晓晔, 娜孜伊曼, 汪钰婷, 黄大瑞. 准噶尔盆地莫南斜坡侏罗系西山窑组油气成藏条件及富集主控因素[J]. 岩性油气藏, 2025, 37(3): 33-46.
[2] 冉逸轩, 杜长鹏, 张晶晶. 松辽盆地北部葡萄花油田白垩系泉四段源下型致密油成藏条件[J]. 岩性油气藏, 2025, 37(3): 47-58.
[3] 邓高山, 董雪梅, 余海涛, 张洁, 岳喜伟, 任军民, 姜涛. 准噶尔盆地沙湾凹陷三叠系百口泉组油气成藏条件及勘探潜力[J]. 岩性油气藏, 2025, 37(3): 59-72.
[4] 徐兆辉, 曾洪流, 胡素云, 张君龙, 刘伟, 周红英, 马德波, 傅启龙. 地震沉积学在塔里木盆地古城地区下寒武统沉积结构与储层预测中的应用[J]. 岩性油气藏, 2025, 37(2): 153-165.
[5] 胡心玲, 荣焕青, 杨伟, 张再昌, 漆智先. 东营凹陷八面河地区古近系沙四段湖相白云岩测井识别及应用[J]. 岩性油气藏, 2025, 37(1): 13-23.
[6] 薛煜恒, 李坤, 尚娅敏, 陈秋佟, 盛烈豪, 刘建斌. 东海盆地西湖凹陷孔雀亭区断裂体系特征及控藏效应[J]. 岩性油气藏, 2025, 37(1): 161-169.
[7] 程焱, 王波, 张铜耀, 齐玉民, 杨纪磊, 郝鹏, 李阔, 王晓东. 渤中凹陷渤中A-2区新近系明化镇组岩性油气藏油气运移特征[J]. 岩性油气藏, 2024, 36(5): 46-55.
[8] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[9] 何文渊, 陈可洋. 哈萨克斯坦南图尔盖盆地Doshan斜坡带岩性油气藏储层预测方法[J]. 岩性油气藏, 2024, 36(4): 1-11.
[10] 杨为华. 松辽盆地双城断陷白垩系营城组四段致密油成藏主控因素及模式[J]. 岩性油气藏, 2024, 36(4): 25-34.
[11] 张磊, 李莎, 罗波波, 吕伯强, 谢敏, 陈新平, 陈冬霞, 邓彩云. 东濮凹陷北部古近系沙三段超压岩性油气藏成藏机理[J]. 岩性油气藏, 2024, 36(4): 57-70.
[12] 秦正山, 何勇明, 丁洋洋, 李柏宏, 孙双双. 边水气藏水侵动态分析方法及水侵主控因素[J]. 岩性油气藏, 2024, 36(4): 178-188.
[13] 王小娟, 陈双玲, 谢继容, 马华灵, 朱德宇, 庞小婷, 杨田, 吕雪莹. 川西南地区侏罗系沙溪庙组致密砂岩成藏特征及主控因素[J]. 岩性油气藏, 2024, 36(1): 78-87.
[14] 窦立荣, 李志, 杨紫, 张兴阳, 康海亮, 张明军, 张良杰, 丁梁波. 中国石油海外岩性地层油气藏勘探进展与前景展望[J]. 岩性油气藏, 2023, 35(6): 1-9.
[15] 史卜庆, 丁梁波, 马宏霞, 孙辉, 张颖, 许小勇, 王红平, 范国章. 东非海域大型深水沉积体系及油气成藏特征[J]. 岩性油气藏, 2023, 35(6): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!