岩性油气藏 ›› 2025, Vol. 37 ›› Issue (2): 153–165.doi: 10.12108/yxyqc.20250214

• 地质勘探 • 上一篇    

地震沉积学在塔里木盆地古城地区下寒武统沉积结构与储层预测中的应用

徐兆辉1, 曾洪流2, 胡素云1, 张君龙3, 刘伟1, 周红英1, 马德波1, 傅启龙2   

  1. 1. 中国石油勘探开发研究院, 北京 100083;
    2. 美国德克萨斯大学 奥斯汀分校经济地质局, Austin 78713;
    3. 中国石油大庆油田勘探开发研究院, 黑龙江 大庆 163712
  • 收稿日期:2023-12-01 修回日期:2024-03-26 发布日期:2025-03-06
  • 第一作者:徐兆辉(1981—),男,博士,高级工程师,主要从事地震沉积学与油气成藏研究工作。地址:(100083)北京市海淀区学院路20号910信箱。Email:zhaohui.xu@petrochina.com.cn。
  • 基金资助:
    国家重大专项“大型油气田及煤层气开发”(编号:2016ZX05004)和国际合作项目“海相碳酸盐岩地震沉积学综合研究技术及其在塔里木盆地的应用”(编号:UTA18-000493/19HTY5000008)联合资助。

Application of seismic sedimentology in predicting the Lower Cambrian sedimentary structure and reservoir rocks in Gucheng area, Tarim Basin

XU Zhaohui1, ZENG Hongliu2, HU Suyun1, ZHANG Junlong3, LIU Wei1, ZHOU Hongying1, MA Debo1, FU Qilong2   

  1. 1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China;
    2. Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin 78713, USA;
    3. Research Institute of Petroleum Exploration & Development, PetroChina Daqing Oilfield Company, Daqing 163712, Heilongjiang, China
  • Received:2023-12-01 Revised:2024-03-26 Published:2025-03-06

摘要: 塔里木盆地轮探1井揭示深层下寒武统白云岩具备油气勘探潜力,古城地区与轮探1井位于同一台缘带。利用地震沉积学的地震地貌学和地震岩性学两大分支学科原理研究了古城地区下寒武统沉积特征,将相位旋转、小波分频、wheeler域转换、地层切片和RGB融合技术整合,形成了地震地貌学(模式驱动)研究流程,从而定性表征沉积相;将相位旋转、小波分频、地震属性提取、主因子分析和随机拟合技术整合形成了地震岩性学(数据驱动)研究流程,从而定量预测储层分布。研究结果表明:①塔里木盆地古城地区下寒武统自西向东发育内缓坡、中缓坡、外缓坡至盆地环境,组成完整沉积相序。中缓坡发育3套(6期)礁滩体,第2套受后期潮道改造,形成潮道改造型碳酸盐岩颗粒滩,潮道内地层较均质,潮道间地层垂向非均质性强导致地震频率较高。②研究区外缓坡近端发育线物源斜坡扇,外缓坡远端至盆地区域发育点物源盆底扇。源自中缓坡礁滩体系的沉积物沿着同沉积走滑断裂相关峡谷被搬运,从而形成了斜坡扇和盆底扇。③研究区储层多发育于中缓坡,外缓坡至盆地较少,内缓坡几乎不发育。外缓坡至盆地区域发育的斜坡扇和盆底扇、中缓坡发育的潮道间岩溶颗粒滩和潮道口发育的潮汐三角洲储层厚度较大。

关键词: 地震沉积学, 地震地貌学, 地震岩性学, 潮道, 颗粒滩, 线物源斜坡扇, 点物源盆底扇, 下寒武统, 古城地区, 塔里木盆地

Abstract: Well Luntan-1 revealed huge hydrocarbon potential in Lower Cambrian deep dolostone reservoir in Tarim Basin. Gucheng area is located in the same platform margin with Well Luntan-1 during the Early Cambrian. Two branches of seismic sedimentology,i.e.,seismic geomorphology and seismic lithology were used to study the sedimentary characteristics of Lower Cambrian in Gucheng area. Techniques of phase rotation,frequency decomposition by wavelet,wheeler-domain transformation,stratal slicing,and RGB fusion were integrated into a seismic geomorphologic(model driven)workflow to qualitatively restore sedimentary facies. Techniques of phase rotation,frequency decomposition by wavelet,seismic attribute extraction,principal component analysis,and random fitting were combined into a seismic lithologic(data driven)workflow to quantitatively predict reservoir distribution. The results show that:(1)The inner ramp,middle ramp,and outer ramp to basin from west to east in Gucheng area consist of an integral series of sedimentary facies of Lower Cambrian in Gucheng area of Tarim Basin. Three sets(six periods)of reef-shoal systems were interpreted in the middle ramp. The second set was modified by later tidal-channels,resulting in a tidal-channel modified carbonate grainstone shoal. Strata are homogenous in the channels while heterogeneous in the inter-channel areas,which leads to higher seismic frequency.(2)Line-sourced slope fans in the proximal-end of outer ramp and point-sourced basinfloor fans in the distal-end of outer ramp to basin were recognized in the study area. Sediment materials sourced from the reef-shoal system in the middle ramp were transported to the slop fans and basin-floor fans through canyons related to synsedimentary strike-slip faults conducted.(3)Reservoirs are abundant in the middle ramp,minor in the outer ramp to basin,and rare in the inner ramp in this area. The reservoir rocks are thick at the slope fans and the basin-floor fans in the outer ramp to basin area,as well as at inter-channel karstified grainstone shoals and channel-mouth tidal delta in the middle ramp area.

Key words: seismic sedimentology, seismic geomorphology, seismic lithology, tidal-channel, grainstone shoal, line-sourced slope fan, point-sourced basin-floor fan, Lower Cambrian, Gucheng area, Tarim Basin

中图分类号: 

  • TE122
[1] 刘化清,冯明,郭精义,等.坳陷湖盆斜坡区深水重力流水道地震响应及沉积特征:以松辽盆地LHP地区嫩江组一段为例[J].岩性油气藏,2021,33(3):1-12. LIU Huaqing,FENG Ming,GUO Jingyi,et al. Seismic reflection and sedimentary characteristics of deep-water gravity flow channels on the slope of lacustrine depression basin:First member of Nenjiang Formation in LHP area,Songliao Basin[J]. Lithologic Reservoirs,2021,33(3):1-12.
[2] 徐兆辉,胡素云,王露,等.地震沉积学在不同沉积相和储集层研究中的应用[J].古地理学报,2020,22(4):727-743. XU Zhaohui,HU Suyun,WANG Lu,et al. The application of seismic sedimentology in studying different sedimentary facies and reservoirs[J]. Journal of Palaeogeography (Chinese Edition),2020,22(4):727-743.
[3] 林承焰,张宪国.石油地震地质学探讨及展望[J].岩性油气藏,2011,23(1):17-22. LIN Chengyan,ZHANG Xianguo. Development and prospect of petroleum seismogeology[J]. Lithologic Reservoirs,2011, 23(1):17-22.
[4] 张天付,黄理力,倪新锋,等.塔里木盆地柯坪地区下寒武统吾松格尔组岩性组合及其成因和勘探意义:亚洲第一深井轮探1井突破的启示[J].石油与天然气地质,2020,41(5):928-940. ZHANG Tianfu,HUANG Lili,NI Xinfeng,et al. Lithological combination,genesis and exploration significance of the Lower Cambrian Wusonggeer Formation of Kalpin area in Tarim Ba-sin:Insight through the deepest Asian onshore well-Well Lun-tan 1[J]. Oil&Gas Geology,2020,41(5):928-940.
[5] 朱永进,郑剑锋,俞广,等.塔里木盆地轮南-古城地区寒武系大型台地边缘层序结构、沉积演化及油气勘探潜力[J].石油学报,2024,45(7):1061-1077. ZHU Yongjin,ZHENG Jianfeng,YU Guang,et al. Sequence ar-chitecture,sedimentary evolution and hydrocarbon exploration potential of the large Cambrian platform margin in LunnanGucheng area of Tarim Basin[J]. Acta Petrolei Sinica,2024,45(7):1061-1077.
[6] 胡媛,张子明,王恩辉,等.塔里木盆地不同类型斜坡带特征及其控油作用[J].岩性油气藏,2010,22(4):72-79. HU Yuan,ZHANG Ziming,WANG Enhui,et al. Characteris-tics of different types of slope belt and its oil-control effect in Tarim Basin[J]. Lithologic Reservoirs,2010,22(4):72-79.
[7] 宋鸿彪,罗志立.四川盆地基底及深部地质结构研究的进展[J].地学前缘,1995,2(3/4):231-237. SONG Hongbiao,LUO Zhili. The study of the basement and deep geological structures of Sichuan Basin,China[J]. Earth Science Frontiers,1995,2(3/4):231-237.
[8] TORSVIK T H,SMETHURST M A,MEERT J G,et al. Continental break-up and collision in the Neoproterozoic and Palaeozoic:A tale of Baltica and Laurentia[J]. Earth-Science Reviews,1996,40:229-258.
[9] 罗志立,刘顺,刘树根,等."峨眉地幔柱"对扬子板块和塔里木板块离散的作用及其找矿意义[J].地球学报,2004,25(5):515-522. LUO Zhili,LIU Shun,LIU Shugen,et al. The action of "Emei mantle plume" on the separation of the Yangtze plate from the tarim plate and its significance in exploration[J]. Acta Geosci-entica Sinica,2004,25(5):515-522.
[10] 张光亚,童晓光,辛仁臣,等.全球岩相古地理演化与油气分布(一)[J].石油勘探与开发,2019,46(4):633-652. ZHANG Guangya,TONG Xiaoguang,XIN Renchen,et al. Evolution of lithofacies and paleogeography and hydrocarbon distribution worldwide (Ⅰ)[J]. Petroleum Exploration and De-velopment,2019,46(4):633-652.
[11] 程裕淇.中国区域地质概论[M].北京:地质出版社,1994. CHENG Yuqi. Review of regional geology in China[M]. Bei-jing:Geological Publishing House,1994.
[12] 孙冬胜,李双建,李建交,等.塔里木与四川盆地震旦系-寒武系油气成藏条件对比与启示[J].地质学报,2022,96(1):249-264. SUN Dongsheng,LI Shuangjian,LI Jianjiao,et al. Insights from a comparison of hydrocarbon accumulation conditions of Sinian-Cambrian between the Tarim and the Sichuan basins[J]. Acta Geologica Sinica 2022,96(1):249-264.
[13] 窦立荣,刘化清,李博,等.全球天然氢气勘探开发利用进展及中国的勘探前景[J].岩性油气藏,2024,36(2):1-14. DOU Lirong,LIU Huaqing,LI Bo,et al. Global natural hydro-gen exploration and development situation and prospects in China[J]. Lithologic Reservoirs,2024,36(2):1-14.
[14] 尤东华,王亮,胡文瑄,等.从成岩-蚀变特征探讨塔深1井白云岩储层成因[J].岩石矿物学杂志,2018,37(1):34-46. YOU Donghua,WANG Liang,HU Wenxuan,et al. Formation of deep dolomite reservoir of well TS1:Insights from diagen-esis and alteration investigations[J]. Acta Petrologica Mineralogica,2018,37(1):34-46.
[15] 杨海军,陈永权,田军,等.塔里木盆地轮探1井超深层油气勘探重大发现与意义[J].中国石油勘探,2020,25(2):62-72. YANG Haijun J,CHEN Yongquan,TIAN Jun,et al. Great discovery and its significance of ultra-deep oil and gas exploration in well Luntan-1 of the Tarim Basin[J]. China Petroleum Exploration,2020,25(2):61-72.
[16] 田方磊,彭妙,韩俊,等.塔里木盆地中部深层-超深层地震波组特征及其地质意义[J].石油与天然气地质,2021,42(2):354-369. TIAN Fanglei,PENG Miao,HAN Jun,et al. Characteristics and geological implications of seismic reflections of deep and ultra-deep layers in central Tarim Basin[J]. Oil&Gas Geology,2021,42(2):354-369.
[17] TORSVIK T H,SMETHURST M A. Plate tectonic modelling:Virtual reality with GMAP[J]. Computers&Geosciences,1999, 25(4):395-402.
[18] 周肖贝,李江海,王洪浩,等.寒武纪全球板块构造与古地理环境再造[J].海相油气地质,2014,19(2):1-7. ZHOU Xiaobei,LI Jianghai,WANG Honghao,et al. Recon-struction of Cambrian Global Paleo-plates and Paleogeography[J]. Marine Origin Petroleum Geology,2014,19(2):1-7.
[19] 何登发,白武明,孟庆任.塔里木盆地地球动力学演化与含油气系统旋回[J].地球物理学报,1998,41(增刊1):77-87. HE Dengfa,BAI Wuming,MENG Qingren. Geodynamic evo-lution and petroleum system cycle of Tarim Basin[J]. Acta Geophysica Sinica,1998,41(Suppl 1):77-87.
[20] 赵宗举,罗家洪,张运波,等.塔里木盆地寒武纪层序岩相古地理[J].石油学报,2011,32(6):937-948. ZHAO Zongju,LUO Jiahong,ZHANG Yunbo,et al. Lithofa-cies paleogeography of Cambrian sequences in the Tarim Basin[J]. Acta Petrolei Sinica,2011,32(6):937-948.
[21] 田雷,崔海峰,刘军,等.塔里木盆地早、中寒武世古地理与沉积演化[J].石油与天然气地质,2018,39(5):1011-1021. TIAN Lei,CUI Haifeng,LIU Jun,et al. Early-Middle Cambrian paleogeography and depositional evolution of Tarim Basin[J]. Oil&Gas Geology,2018,39(5):1011-1021.
[22] 胡明毅,孙春燕,高达.塔里木盆地下寒武统肖尔布拉克组构造岩相古地理特征[J].石油与天然气地质,2019,40(1):12-23. HU Mingyi,SUN Chunyan,GAO Da. Characteristics of tectoniclithofacies paleogeography in the Lower Cambrian Xiaoerbu-lake Formation,Tarim Basin[J]. Oil&Gas Geology,2019,40(1):12-23.
[23] 易士威,李明鹏,郭绪杰,等.塔里木盆地寒武系盐下勘探领域的重大突破方向[J].石油学报,2019,40(11):1281-1295. YI Shiwei,LI Mingpeng,GUO Xujie,et al. Breakthrough di-rection of Cambrian pre-salt exploration fields in Tarim Basin[J]. Acta Petrolei Sinica,2019,40(11):1281-1295.
[24] 贺锋,林畅松,刘景彦,等.塔东南寒武系-中下奥陶统碳酸盐岩台缘带的迁移与相对海平面变化的关系[J].石油与天然气地质,2017,38(4):711-721. HE Feng,LIN Changsong,LIU Jingyan,et al. Migration of the Cambrian and Middle-Lower Ordovician carbonate platform margin and its relation to relative sea level changes in south-eastern Tarim Basin[J]. Oil&Gas Geology,2017,38(4):711-721.
[25] 严威,邬光辉,张艳秋,等.塔里木盆地震旦纪-寒武纪构造格局及其对寒武纪古地理的控制作用[J].大地构造与成矿学,2018,42(3):455-466. YAN Wei,WU Guanghui,ZHANG Yanqiu,et al. Sinian-Cambrian tectonic framework in the Tarim Basin and its influences on the paleogeography of the Early Cambrian[J]. Geotectonica et Metallogenia,2018,42(3):455-466.
[26] 张守安,李德茂,韩萍,等.塔里木盆地构造-地层组合特征[J].新疆石油地质,1998,19(4):299-302. ZHANG Shouan,LI Demao,HAN Ping,et al. Structure-stratigraphy assemblage characteristics in Tarim Basin[J]. Xinjiang Petro-leum Geology,1998,19(4):299-302.
[27] 冯乔.塔里木盆地满加尔凹陷地层埋藏史与有机质成熟演化[J].沉积学报,1997,15(1):173-177. FENG Qiao. Burial history of stratigraphy and maturity evolution of organic matter in manjar depression Tarim Basin[J]. Acta Sedimentologica Sinica,1997,15(1):173-177.
[28] 杨海军,于双,张海祖,等.塔里木盆地轮探1井下寒武统烃源岩地球化学特征及深层油气勘探意义[J].地球化学, 2020,49(6):666-682. YANG Haijun,YU Shuang,ZHANG Haizu,et al. Geochemical characteristics of Lower Cambrian sources rocks from the deepest drilling of well LT-1 and their significance to deep oil gas exploration of the Lower Paleozoic system in the Tarim Basin[J]. Geochimica,2020,49(6):666-682.
[29] 曹颖辉,王珊,张亚金,等.塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力[J].石油勘探与开发, 2019,46(6):1099-1114. CAO Yinghui,WANG Shan,ZHANG Yajin,et al. Petroleum geological conditions and exploration potential of Lower Paleo-zoic carbonate rocks in Gucheng area,Tarim Basin,China[J]. Petroleum Exploration and Development,2019,46(6):1099-1114.
[30] HENDRY J,BURGESS P,HUNT D,et al. Seismic characterization of carbonate platforms and reservoirs:An introduction and review[J]. Geological Society,London,Special Publications,2021,509:1-28.
[31] PERKINS R D. Part Ⅱ,Depositional framework of Pleistocene rocks in south Florida[M]. Geological Society of America, Memoir 147,1977.
[32] CONIGLIO M,HARRISON R S. Facies and diagenesis of late Pleistocene carbonates from Big Pine Key,Florida[J]. Bulletin of Canadian Petroleum Geology,1983,31(3):135-147.
[33] DODD J R,SIEMERS C T. Effect of Late Pleistocene Karst to-pography on Holocene sedimentation and biota,Lower Florida Keys[J]. Geological Society of America Bulletin,1971,82(1):211-218.
[34] HOFFMEISTER J E,STOCKMAN K W,MULTER H G. Miami Limestone of Florida and its Recent Bahamian counterpart[J]. Geological Society of America Bulletin,1967,78:175-190.
[35] HARRISON R S,CONIGLIO M. Origin of the Pleistocene Key Largo Limestone Florida Keys[J]. Bulletin of Canadian Petroleum Geology,1985,33(3):350-358.
[36] WARZESKI E R,CUNNINGHAM K J,GINSBURG R N,et al. A Neogene mixed siliciclastic and carbonate foundation for the Quaternary carbonate shelf,Florida Keys[J]. Journal of Sedimentary Research,1996,66(4):788-800.
[37] MISSIMER T M,MALIVA R G. Late Miocene to early Plio-cene fluvial transport of siliciclastic sediment onto the southern Florida Platform[J]. Gulf Coast Association of Geological So-cieties Transactions,2006,56:605-612.
[38] HOFFMEISTER J E,MULTER H G. Geology and origin of the Florida Keys[J]. Bulletin Geology Society America,1968, 79:1487-1502.
[39] 高孝巧.塔里木盆地巴楚-塔中地区肖尔布拉克组沉积特征及控储机理[D].北京:中国地质大学(北京),2018:1-125. GAO Xiaoqiao. Sedimentary characteristics and its control mechanisms on reservoirs of the Xiaoerbulak Formation in Bachu-Tazhong region,Tarim Basin,NW China[D]. Beijing:China University of Geosciences (Beijing),2018:1-125.
[40] 宋金民,罗平,杨式升,等.塔里木盆地苏盖特布拉克地区下寒武统肖尔布拉克组碳酸盐岩微生物建造特征[J].古地理学报,2012,14(3):341-354. SONG Jinmin,LUO Ping,YANG Shisheng,et al. Carbonate rock microbial construction of the Lower Cambrian Xiaoerblak Formation in Sugaitblak area,Tarim Basin[J]. Journal of Palaeo-geography,2012,14(3):341-354.
[41] 宋金民,罗平,杨式升,等.苏盖特布拉克地区下寒武统微生物礁演化特征[J].新疆石油地质,2012,33(6):668-671. SONG Jinmin,LUO Ping,YANG Shisheng,et al. Evolution characteristics of microbial reef of Lower Cambrian in Sugaite-blak area,Tarim Basin[J]. Xinjiang Petroleum Geology,2012, 33(6):668-671.
[42] 白莹,罗平,刘伟,等.微生物碳酸盐岩储层特征及主控因素:以塔里木盆地阿克苏地区下寒武统肖尔布拉克组上段为例[J].中国石油勘探,2018,23(4):95-106. BAI Ying,LUO Ping,LIU Wei,et al. Characteristics and main controlling factors of microbial carbonate reservoir:A case study of upper member of Lower Cambrian Xiaoerbulake Formation in Akesu area,Tarim Basin[J]. China Petroleum Explo-ration,2018,23(4):95-106.
[43] 黄擎宇,胡素云,潘文庆,等.台内微生物丘沉积特征及其对储层发育的控制:以塔里木盆地柯坪-巴楚地区下寒武统肖尔布拉克组为例[J].天然气工业,2016,36(6):21-29. HUANG Qingyu,HU Suyun,PAN Wenqing,et al. Sedimentary characteristics of intra-platform microbial mounds and their controlling effects on the development of reservoirs:A case study of the Lower Cambrian Xiaoerbulake Fm in the KepingBachu area,Tarim Basin[J]. Natural Gas Industry,2016,36(6):21-29.
[44] 李莹,潘文庆,吴亚生,等.塔里木盆地苏盖特布拉克剖面寒武系第二统第三阶微生物岩结构类型[J].古地理学报, 2020,22(4):663-679. LI Ying,PAN Wenqing,WU Yasheng,et al. Fabric types of microbialites from the Stage 3 of Cambrian Series 2 in Sugaite-bulake section,Tarim Basin[J]. Journal of Palaeogeography (Chinese Edition),2020,22(4):663-679.
[45] SANGREE J B,WIDMIER J M. Seismic stratigraphy and global changes of sea level. Part 9:Seismic interpretation of clastic depositional facies[J]. The American Association of Petroleum Geologists Bulletin,1978,62(5):752-771.
[46] ZENG Hongliu,ZHU Xiaomin,ZHU Rukai. New insights into seismic stratigraphy of shallow-water progradational sequences:Subseismic clinoforms[J]. Interpretation,2013,1(1):SA35-SA51.
[47] NEFF D B. Amplitude map analysis using forward modeling in sandstone and carbonate reservoirs[J]. Geophysics,1993,58(10):1428-1441.
[48] HU Suyun,ZHAO Wenzhi,XU Zhaohui,et al. Applying princi-pal component analysis to seismic attributes for interpretation of evaporite facies:Lower Triassic Jialingjiang Formation,Sichuan Basin,China[J]. Interpretation,2017,5(4):T461-T475.
[49] LIU Lifeng,SUN Zandong,YANG Haijun. A new reservoir prediction method:PCA value-weighted attribute optimization[C]. 81st Annual International Meeting,SEG,Expanded Abstracts,2011.
[50] WALLET B C. Using the image grand tour to visualize fluvial deltaic architectural elements in south Texas,USA[J]. Interpretation,2013,1(1):SA117-SA129.
[51] 印兴耀,孔国英,张广智.基于核主成分分析的地震属性优化方法及应用[J].石油地球物理勘探,2008,43(2):179-183. YIN Xingyao,KONG Guoying,ZHANG Guangzhi. Seismic attributes optimization based on kernel principal component analy-sis (KPCA) and application[J]. Oil Geophysical Prospecting, 2008,43(2):179-183.
[52] ATWOOD D K,BUBB J N. Distribution of dolomite in a tidal flat environment Sugarloaf Key,Florida[J]. Journal of Geology, 1970,78:499-505.
[53] 高振中,何幼斌,张兴阳,等.塔中地区中晚奥陶世内波、内潮汐沉积[J].沉积学报,2000,18(3):400-407. GAO Zhenzhong,HE Youbin,ZHANG Xingyang,et al. Internalwave and internal-tide deposits of the Middle-Upper Ordovician in the Center Tarim Basin[J]. Acta Sedimentologica Sinica, 2000,18(3):400-407.
[54] 李华,何幼斌,王英民,等.深水交互作用沉积研究进展:以南海北部珠江口盆地为例[J].岩性油气藏,2015,27(5):218-224. LI Hua,HE Youbin,WANG Yingmin,et al. Research advances in deep water interaction deposition:A case from the Pearl River Mouth Basin,northern South China Sea[J]. Lithologic Reservoirs,2015,27(5):218-224.
[55] ZENG Hongliu,XU Zhaohui,LIU Wei,et al. Seismic-informed carbonate shelf-to-basin transition in deeply buried Cambrian strata,Tarim Basin,China[J]. Marine and Petroleum Geology, 2022,136:105448.
[56] 徐兆辉,胡素云,曾洪流,等.塔里木盆地肖尔布拉克组上段烃源岩分布预测及油气勘探意义[J].地学前缘,2024,31(2):343-358. XU Zhaohui,HU Suyun,ZENG Hongliu,et al. Distribution and hydrocarbon significance of source rock in Upper Xiaoer-bulake Formation,Tarim Basin,NW China[J]. Earth Science Frontiers,2024,31(2):343-358.
[1] 李凌, 邓禹, 张新宇, 罗文军, 赵东方, 曾建军, 刘耘, 谭秀成. 川中蓬莱—高磨地区震旦系灯二段泡沫绵层白云岩成因及地质意义[J]. 岩性油气藏, 2025, 37(2): 60-69.
[2] 李亚, 王尉, 赵立可, 刘冉, 张玺华, 陈延贵, 黄天海, 肖笛. 四川盆地德阳—绵阳凹陷南缘二叠系栖霞组沉积演化及有利储层分布[J]. 岩性油气藏, 2025, 37(2): 81-91.
[3] 吴冠桦, 刘宏, 宋林珂, 曾琪, 杨涛. 四川盆地西南部东瓜场地区侏罗系沙溪庙组沉积特征及有利储层预测[J]. 岩性油气藏, 2025, 37(2): 92-102.
[4] 梁鑫鑫, 张银涛, 陈石, 谢舟, 周建勋, 康鹏飞, 陈九洲, 彭梓俊. 塔里木盆地富满油田走滑断裂多核破碎带地震响应特征[J]. 岩性油气藏, 2025, 37(2): 127-138.
[5] 熊昶, 王彭, 刘小钰, 王伟, 赵星星, 孙冲. 塔中隆起奥陶系油气性质及运聚富集模式[J]. 岩性油气藏, 2025, 37(1): 53-67.
[6] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[7] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[8] 朱彪, 邹妞妞, 张大权, 杜威, 陈祎. 黔北凤冈地区下寒武统牛蹄塘组页岩孔隙结构特征及油气地质意义[J]. 岩性油气藏, 2024, 36(4): 147-158.
[9] 卢科良, 吴康军, 李志军, 孙永河, 徐少华, 梁锋, 刘露, 李爽. 川中古隆起北斜坡寒武系龙王庙组油气成藏特征及演化模式[J]. 岩性油气藏, 2024, 36(4): 159-168.
[10] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[11] 魏全超, 李小佳, 李峰, 郝景宇, 邓双林, 吴娟, 邓宾, 王道军. 四川盆地米仓山前缘旺苍地区下寒武统筇竹寺组裂缝脉体发育特征及意义[J]. 岩性油气藏, 2023, 35(5): 62-70.
[12] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[13] 梁小聪, 牛杏, 胡明毅, 黎洋, 胡忠贵, 蔡全升. 湘鄂西下寒武统牛蹄塘组黑色页岩发育特征及沉积环境[J]. 岩性油气藏, 2023, 35(4): 102-114.
[14] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[15] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!