岩性油气藏 ›› 2025, Vol. 37 ›› Issue (1): 53–67.doi: 10.12108/yxyqc.20250105

• 地质勘探 • 上一篇    下一篇

塔中隆起奥陶系油气性质及运聚富集模式

熊昶1,2,3, 王彭1,2,3, 刘小钰4, 王伟4, 赵星星2,3,4, 孙冲1,2,3   

  1. 1. 中国石油塔里木油田公司 勘探开发研究院, 新疆 库尔勒 841000;
    2. 中国石油天然气集团有限公司超深层复杂油气藏勘探开发技术研发中心, 新疆 库尔勒 841000;
    3. 新疆维吾尔自治区超深层复杂油气藏勘探开发工程研究中心, 新疆 库尔勒 841000;
    4. 中国石油塔里木油田公司 油气田产能建设事业部, 新疆 库尔勒 841000
  • 收稿日期:2024-03-21 修回日期:2024-06-05 出版日期:2025-01-01 发布日期:2025-01-04
  • 第一作者:熊昶(1990—),男,硕士,高级工程师,主要从事碳酸盐岩油气成藏研究工作。地址:(841000)新疆维吾尔自治区库尔勒市塔里木研发中心。Email:xiongc-tlm@petrochina.com.cn。通信作者:王彭(1988—),男,硕士,高级工程师,主要从事碳酸盐岩油
  • 通信作者: 王彭(1988—),男,硕士,高级工程师,主要从事碳酸盐岩油气成藏研究工作。Email:wangpeng-tlm@petrochina.com.cn。
  • 基金资助:
    中国石油天然气集团有限公司科技项目“海相碳酸盐岩油气规模增储上产与勘探开发技术研究”(编号:2023ZZ16YJ04)资助。

Geological characteristics and enrichment model of Ordovician oil and gas in Tazhong Uplift

XIONG Chang1,2,3, WANG Peng1,2,3, LIU Xiaoyu4, WANG Wei4, ZHAO Xingxing2,3,4, SUN Chong1,2,3   

  1. 1. Research Institute of Exploration and Development, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;
    2. R & D Center for Ultra-Deep Complex Reservoir Exploration and Development, CNPC, Korla 841000, Xinjiang, China;
    3. Xinjiang Engineering Research Center for Ultra-deep Complex Reservoir Exploration and Development, Korla 841000, Xinjiang, China;
    4. Oil and Gas Field Productivity Construction Division, PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
  • Received:2024-03-21 Revised:2024-06-05 Online:2025-01-01 Published:2025-01-04

摘要: 以构造、断裂分布、生产动态以及地球化学等资料为基础,对塔中地区奥陶系油气性质与产能分布特征进行了分析,从油气充注、输导体系、构造与油气运聚关系等3个方面对油气富集因素进行了分析,并建立了成藏模式。研究结果表明:①塔中地区奥陶系原油以轻质原油为主,具有低密度、低黏度、低含硫的特征,密度为0.75~0.85 g/m3,油气藏气油比为119~82 367 m3/m3,多相态油气藏并存,且油气相态无明显边界;天然气干燥系数为0.70~0.98,天然气甲烷碳同位素为-35.7‰~-61.4‰,变化范围大;不同区域金刚烷指数(MDI)差异较大,为0.33~0.64;8个主要油气充注点具有原油密度低、气油比高、天然气甲烷同位素及MDI高的特征,沿走滑断裂带向南或远离断裂带方向密度变大,气油比、甲烷碳同位素及MDI均变小,不同区块气侵强度不同造成变化规律存在局部差异。②研究区油气分布格局主要受点状油气充注影响,8个油气充注点周缘油气井通常具有较高的产量,受储层发育规模影响会出现低产井,产能分布具有“北气南油”、“中间气、两边油”及“普遍富气、局部含油”3种类型;远离充注点的低产井及水井大范围分布。③研究区奥陶系油气富集模式为张扭性大断裂控制油气垂向充注,不整合面及走滑断裂控制油气的侧向调整,断裂破碎带叠加层间岩溶为油气聚集提供了储集空间,局部构造高部位及平台区为油气聚集有利指向区。

关键词: 轻质原油, 金刚烷指数, 张扭性大断裂, 走滑断裂, 不整合面, 断裂破碎带, 岩溶作用, 奥陶系, 塔中隆起, 塔里木盆地

Abstract: Based on the data of structural analysis,fault distribution,production dynamics,and geochemistry,an analysis is conducted on the characteristics of oil and gas properties as well as productivity distribution in the Tazhong area during the Ordovician period. The factors contributing to oil and gas accumulation are examined from three perspectives:oil and gas charging,transport system,structure,and the relationship between migration and accumulation. Consequently,an accumulation model is established. The results show that:(1)The crude oil found in the Tazhong area during the Ordovician period is predominantly light crude oil with low density,viscosity, and sulfur content. Its density ranges from 0.75 to 0.85 g/m3,while the gas-oil ratio varies between 119 and 82, 367 m3/m3. This region contains multi-phase oil and gas reservoirs where there is no distinct boundary between the oil and gas phases. The dryness coefficient of natural gas ranges from 0.70 to 0.98,and the carbon isotope composition of methane in natural gas shows a wide variation ranging from -35.7‰ to -61.4‰. Different regions exhibit amantane index(MDI)values ranging from 0.33 to 0.64. The eight major oil and gas charging points exhibit characteristics such as low crude oil density,high gas-oil ratio,and elevated levels of methane carbon isotope and MDI. Moving along the strike-slip fault zone towards the south or away from it results in an increase in density,while the gas-oil ratio,methane carbon isotope,and MDI all decrease. Variations in gas penetration intensity across different blocks may lead to localized differences in these patterns.(2)The distribution pattern of oil and gas in the study area is primarily influenced by localized oil and gas charging. Oil and gas wells surrounding the 8 charging points typically exhibit high production rates,due to reservoir development scale, there may be occasional occurrences of low-producing wells near the charging points. The regional distribution of filling points' production capacity can be categorized into three types:“northern dominance in natural gas,southern abundance in crude oil,”“central prevalence of natural gas with flanking areas rich in crude oil,”and“generally abundant natural gas with localized presence of crude oil”. However,low-producing wells and those located far from the charging points are dispersed over a wide range.(3)The oil and gas enrichment mode in the study area during the Ordovician period is characterized by tension-torsional large faults controlling vertical hydrocarbon charging,unconformity and strike-slip faults governing lateral hydrocarbon migration,interlayer karst within fracture zones providing reservoir space for hydrocarbon accumulation,and local structural highs and platform areas serving as favorable directions for hydrocarbon accumulation.

Key words: light crude oil, amantane index, tension-torsional large faults, strike-slip fault, unconformity, fracture zones, karstification, Ordovician, Tazhong Uplift, Tarim basin

中图分类号: 

  • TE122.1
[1] 张水昌,苏劲,张斌,等. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素[J]. 石油学报,2021,42(12):1566-1580. ZHANG Shuichang,SU Jin,ZHANG Bin,et al. Genetic mechanism and controlling factors of deep marine light oil and condensate oil in Tarim Basin[J]. Acta Petrolei Sinica,2021,42(12):1566-1580.
[2] 熊加贝,何登发. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素[J]. 岩性油气藏,2022,34(1):187-200. XIONG Jiabei,HE Dengfa. Distribution characteristics and controlling factors of global giant carbonate stratigraphiclithologic oil and gas fields[J]. Lithologic Reservoirs,2022,34(1):187-200.
[3] GROSJEAN E,LOVE G D,KELLY A E,et al. Geochemical evidence for an Early Cambrian origin of the'Q'oils and some condensates from north Oman[J]. Organic Geochemistry,2012, 45:77-90.
[4] KELLY A E,LOVE G D,ZUMBERGE J E,et al. Hydrocarbon biomarkers of Neoproterozoic to Lower Cambrian oils from eastern Siberia[J]. Organic Geochemistry,2011,42(6):640-654.
[5] DUTTA S,BHATTACHARYA S,RAJU S V. Biomarker signatures from Neoproterozoic-Early Cambrian oil,western India[J]. Organic Geochemistry,2013,56:68-80.
[6] 赵文智,汪泽成,胡素云,等. 中国陆上三大克拉通盆地海相碳酸盐岩油气藏大型化成藏条件与特征[J]. 石油学报, 2012,33(增刊2):1-10. ZHAO Wenzhi,WANG Zecheng,HU Suyun,et al. Large-scale hydrocarbon accumulation factors and characteristics of marine carbonate reservoirs in three large onshore cratonic basins in China[J]. Acta Petrolei Sinica,2012,33(Suppl 2):1-10.
[7] 胡媛,张子明,王恩辉. 塔里木盆地不同类型斜坡带特征及其控油作用[J]. 岩性油气藏,2010,22(4):72-79. HU Yuan,ZHANG Ziming,WANG Enhui. Characteristics of different types of slope belt and its oil-control effect in Tarim Basin[J]. Lithologic Reservoirs,2010,22(4):72-79.
[8] 杜金虎. 塔里木盆地寒武-奥陶系碳酸盐岩油气勘探[M]. 北京:石油工业出版社,2010. DU Jinhu. Oil and gas exploration of Cambrian-Ordovician carbonate in Tarim Basin[M]. Beijing:Petroleum Industry Press, 2010.
[9] 邬光辉,庞雄奇,李启明,等. 克拉通碳酸盐岩构造与油气:以塔里木盆地为例[M]. 北京:科学出版社. 2016. WU Guanghui,PANG Xiongqi,LI Qiming,et al. The structural characteristics of carbonate recks and their effects on hydrocarbon exploration in Craton Basin:A case study of the Tarim Basin[M]. Beijing:Science Press. 2016.
[10] 韩剑发,王招明,潘文庆,等. 轮南古隆起控油理论及其潜山准层状油气藏勘探[J]. 石油勘探与开发,2006,33(4):448-453. HAN Jianfa,WANG Zhaoming,PAN Wenqing,et al. Petroleum controlling theory of Lunnan paleohigh and its buried hill pool exploration technology,Tarim Basin[J]. Petroleum Exploration and Development,2006,33(4):448-453.
[11] 汪如军,冯建伟,李世银,等. 塔北-塔中隆起奥陶系富油气三角带断裂特征及控藏分析[J]. 特种油气藏,2023,30(2):26-35. WANG Rujun,FENG Jianwei,LI Shiyin,et al. Analysis on fault characteristics and reservoir control of ordovician hydrocarbon-rich Triangle Zone in Tabei-Tazhong Uplift[J]. Special Oil & Gas Reservoirs,2023,30(2):26-35.
[12] 能源,杨海军,邓兴梁. 塔中古隆起碳酸盐岩断裂破碎带构造样式及其石油地质意义[J]. 石油勘探与开发,2018,45(1):40-50. NENG Yuan,YANG Haijun,DENG Xingliang. Structural patterns of fault damage zones in carbonate rocks and their influences on petroleum accumulation in Tazhong Paleo-uplift, Tarim Basin,NW China[J]. Petroleum Exploration & Development,2018,45(1):40-50.
[13] 江同文,韩剑发,邬光辉,等. 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素[J]. 石油勘探与开发,2020, 47(2):213-224. JIANG Tongwen,HAN Jianfa,WU Guanghui,et al. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift,Tarim Basin,NW China[J]. Petroleum Exploration & Development,2020,47(2):213-224.
[14] 卜旭强,王来源,朱莲花,等. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏,2023,35(3):152-160. BU Xuqiang,WANG Laiyuan,ZHU Lianhua,et al. Characteristics and reservoir accumulation model of Ordovician faultcontrolled fractured-vuggy reservoirs in Shunbei oil and gas field, Tarim Basin[J]. Lithologic Reservoirs,2023,35(3):152-160.
[15] 杨海军,邬光辉,韩剑发,等. 塔里木盆地中央隆起带奥陶系碳酸盐岩台缘带油气富集特征[J]. 石油学报,2007,28(4):26-30. YANG Haijun,WU Guanghui,HAN Jianfa,et al. Characteristics of hydrocarbon enrichment along the Ordovician carbonate platform margin in the central uplift of Tarim Basin[J]. Acta Petrolei Sinica,2007,28(4):26-30.
[16] 邹榕,徐中祥,张晓明,等. 顺北和托甫台区块奥陶系断裂结构单元测井响应特征初探[J]. 油气藏评价与开发,2020,10(2):18-23. ZOU Rong,XU Zhongxiang,ZHANG Xiaoming,et al. Log response characteristics of Ordovician fracture unit in Shunbei and Tuofutai block[J]. Reservoir Evaluation and Development, 2020,10(2):18-23.
[17] 王建忠,向才富,庞雄奇. 塔中断层交汇与岩溶缝洞体系控制的油气成藏效应[J]. 中南大学学报(自然科学版),2015,46(3):952-961. WANG Jianzhong,XIANG Caifu,PANG Xiongqi. Combined effects of fault intersections and karstification fracture-cavity systems on hydrocarbon accumulation in Tazhong area[J]. Journal of Central South University(Science and Technology), 2015,46(3):952-961.
[18] PANG Hong,CHEN Junqing,PANG Xiongqi. Analysis of secondary migration of hydrocarbons in the Ordovician carbonate reservoirs in the Tazhong uplift,Tarim Basin,China[J]. AAPG Bulletin,2013,97(10):1765-1783.
[19] 王阳洋,陈践发,庞雄奇,等. 塔中地区奥陶系油气充注特征及运移方向[J]. 石油学报,2018,39(1):54-68. WANG Yangyang,CHEN Jianfa,PANG Xiongqi,et al. Ordovician hydrocarbon charging characteristics and migration direction in Tazhong area[J]. Acta Petrolei Sinica,2018,39(1):54-68.
[20] 朱秀香,赵锐,赵腾. 塔里木盆地顺北Ⅰ号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏,2023,35(5):131-138. ZHU Xiuxiang,ZHAO Rui,ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No. 1 fault zone,Tarim Basin[J]. Lithologic Reservoirs,2023,35(5):131-138.
[21] 陈叔阳,何云峰,王立鑫,等. 塔里木盆地顺北Ⅰ号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏,2024,36(2):124-135. CHEN Shuyang,HE Yunfeng,WANG Lixin,et al. Architecture characterization and 3D geological modeling of Ordovician carbonate reservoirs in Shunbei No. 1 fault zone,Tarim Basin[J]. Lithologic Reservoirs,2024,36(2):124-135.
[22] TIAN Fanglei,HE Dengfa,CHEN Jiajun,et al. Vertical differential structural deformation of the main strike-slip fault zones in the Shunbei area,central Tarim Basin:Structural characteristics,deformation mechanisms,and hydrocarbon accumulation significance[J]. Acta Geologica Sinica(English Edition),2022, 96(4):1415-1431.
[23] SHEN Weibing,CHEN Jianfa,WANG Yangyang,et al. The origin,migration and accumulation of the Ordovician gas in the Tazhong Ⅲ region,Tarim Basin,NW China[J]. Marine and Petroleum Geology,2018,101:55-77.
[24] 孟万斌,肖春晖,冯明石,等. 碳酸盐岩成岩作用及其对储层的影响:以塔中顺南地区一间房组为例[J]. 岩性油气藏, 2016,28(5):26-33. MENG Wanbin,XIAO Chunhui,FENG Mingshi,et al. Carbonate diagenesis and its influence on reservoir:A case study from Yijianfang Formation in Shunnan area,central Tarim Basin[J]. Lithologic Reservoirs,2016,28(5):26-33.
[25] 李斌,赵星星,邬光辉,等. 塔里木盆地塔中Ⅱ区奥陶系油气差异富集模式[J]. 石油与天然气地质,2023,44(2):308-320. LI Bin,ZHAO Xingxing,WU Guanghui,et al. Differential hydrocarbon accumulation model of the Ordovician in Tazhong Ⅱ block,Tarim Basin[J]. Oil & Gas Geology,2023,44(2):308-320.
[26] 李峰,朱光有,吕修祥,等. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定[J]. 石油学报,2021,42(11):1417-1436. LI Feng,ZHU Guangyou,LYU Xiuxiang,et al. The disputes on the source of Paleozoic marine oil and gas and the determination of the Cambrian system as the main source rocks in Tarim Basin[J]. Acta Petrolei Sinica,2021,42(11):1417-1436.
[27] 韩剑发,邬光辉,肖中尧,等. 塔里木盆地寒武系烃源岩分布的重新认识及其意义[J]. 地质科学,2020,55(1):17-29. HAN Jianfa,WU Guanghui,XIAO Zhongyao,et al. Recognition of the distribution of Cambrian source rocks and its significance for exploration in Tarim Basin[J]. Chinese Journal of Geology, 2020,55(1):17-29.
[28] 闫磊,朱光有,陈永权,等. 塔里木盆地下寒武统烃源岩分布[J]. 天然气地球科学,2019,30(11):1569-1578. YAN Lei,ZHU Guangyou,CHEN Yongquan,et al. Distribution of Lower Cambrian source rocks in the Tarim Basin[J]. Natural Gas Geoscience,2019,30(11):1569-1578.
[29] LI Chuanxin,WANG Xiaofeng,LI Benliang,et al. Paleozoic fault systems of the Tazhong Uplift,Tarim Basin,China[J]. Marine and Petroleum Geology,2013,39(1)48-58.
[30] WU Guanghui,YANG Haijun,HE Shu,et al. Effects of structural segmentation and faulting on carbonate reservoir properties:A case study from the Central Uplift of the Tarim Basin, China[J]. Marine and Petroleum Geology,2016,71:183-197.
[31] 祝渭平,姚清洲,李闯,等. 塔中低凸起奥陶系深层鹰山组三、四段碳酸盐岩油气成藏要素及有利区带[J]. 地球科学, 2023,48(2):690-704. ZHU Weiping,YAO Qingzhou,LI Chuang,et al. Hydrocarbon accumulation factors and favorable exploration of carbonate reservoirs in the 3rd-4th members of Ordovician Yingshan Formation of Tazhong Low Salient[J]. Earth Science,2023,48(2):690-704.
[32] 邬光辉,马兵山,韩剑发,等. 塔里木克拉通盆地中部走滑断裂形成与发育机制[J]. 石油勘探与开发,2021,48(3):510-520. WU Guanghui,MA Bingshan,HAN Jianfa,et al. Origin and growth mechanisms of strike-slip faults in the central Tarim cratonic basin,NW China[J]. Petroleum Exploration and Development,2021,48(3):510-520.
[33] 宋兴国,陈石,杨明慧,等. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏,2023,35(3):99-109. SONG Xingguo,CHEN Shi,YANG Minghui,et al. Development characteristics of F Ⅰ16 fault in Fuman oilfield of Tarim Basin and its influence on oil and gas distribution[J]. Lithologic Reservoirs,2023,35(3):99-109.
[34] WILHELMS A,LARTER S R,LEYTHAEUSER D,et al. Recognition and quantification of the effects of primary migration in a Jurassic clastic source-rock from the Norwegian continental shelf[J]. Organic Geochemistry,1990,16(1/2/3):103-113.
[35] ZHU Guangyou,WENG Na,WANG Huitong,et al. Origin of diamondoid and sulphur compounds in the Tazhong Ordovician condensate,Tarim Basin,China:Implications for hydrocarbon exploration in deep-buried strata[J]. Marine and Petroleum Geology,2015,62:14-27.
[36] QIU Nansheng,CHANG Jian,ZUO Yinhui,et al. Thermal evolution and maturation of lower Paleozoic source rocks in the Tarim Basin,northwest China[J]. AAPG Bulletin,2012,96(5):789821.
[37] 韩剑发,邬光辉,杨海军,等. 塔里木盆地塔中隆起凝析气藏类型与成因[J]. 天然气工业,2021,41(7):24-32. HAN Jianfa,WU Guanghui,YANG Haijun,et al. Type and genesis of condensate gas reservoir in the Tazhong uplift of the Tarim Basin[J]. Natural Gas Industry,2021,41(7):24-32.
[38] SU Jin,YANG Haijun,WANG Xiaomei,et al. The genesis of gas condensates and light oilsin the lower paleozoic of Tarim Basin,NW China:The exploration implications for ultra-deep petroleum[J]. Journal of Petroleum Science and Engineering, 2022:219.
[39] STAHL W. Carbon isotope fractionations in natural gases[J]. Nature,1974,251(5471):134-135.
[40] ENGLAND W,MACKENZIE A,MANN D M,et al. The movement and entrapment of petroleum fluids in the subsurface[J]. Journal of the Geological Society,1987,144(2):327-347.
[41] MOLDOWAN J M,DAHL J,ZINNIKER D,et al. Underutilized advanced geochemical technologies for oil and gas exploration and production-1. The diamondoids[J]. Journal of Petroleum Science and Engineering,2015,126:87-96.
[42] ZHU Guangyou,LI Jingfei,CHI Linxian,et al. The influence of gas invasion on the composition of crude oil and the controlling factors for the reservoir fluid phase[J]. Energy & Fuels, 2020,34(3):2710-2725.
[43] ZHANG Zhiyao,ZHANG Yijie,ZHU Guangyou,et al. Impacts of thermochemical sulfate reduction,oil cracking,and gas mixing on the petroleum fluid phase in the Tazhong area,Tarim Basin, China[J]. Energy & Fuels,2019,33(2):968-978.
[44] ZHANG Zhiyao,ZHANG Yijie,ZHU Guangyou,et al. Variations of diamondoids distributions in petroleum fluids during migration induced phase fractionation:A case study from the Tazhong area,NW China[J]. Journal of Petroleum Science and Engineering,2019,179:1012-1022.
[45] 韩剑发,张海祖,于红枫,等. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探[J]. 岩石学报,2012,28(3):769-782. HAN Jianfa,ZHANG Haizu,YU Hongfeng,et al. Hydrocarbon accumulation characteristic and exploration on large marine carbonate condensate field in Tazhong Uplift[J]. Acta Petrologica Sinica,2012,28(3):769-782.
[46] 张育民. 塔里木盆地卡塔克隆起斜坡区油气成藏期次研究[J]. 石油实验地质,2021,43(6):1015-1023. ZHANG Yumin. Petroleum charge history of the slope area of Katake Uplift in Tarim Basin[J]. Petroleum Geology & Experiment,2021,43(6):1015-1023.
[47] ZHANG Shuichang,ZHANG Bin,YANG Haijun,et al. Adjustment and alteration of hydrocarbon reservoirs during the Late Himalayan Period,Tarim Basin,NW China[J]. Petroleum Exploration and Development,2012,39(6):712-724.
[48] ZHU Guangyou,ZHANG Baotao,YANG Haijun,et al. Origin of deep strata gas of Tazhong in Tarim Basin,China[J]. Organic Geochemistry,2014,74:85-97.
[49] ZHU Guangyou,ZHANG Zhiyao,ZHOU Xiaoxiao,et al. The complexity,secondary geochemical process,genetic mechanism and distribution prediction of deep marine oil and gas in the Tarim Basin,China[J]. Earth-Science Reviews,2019,198:1-28.
[50] 杨海军,朱光有,韩剑发,等. 塔里木盆地塔中礁滩体大油气田成藏条件与成藏机制研究[J]. 岩石学报,2011,27(6):1865-1885. YANG Haijun,ZHU Guangyou,HAN Jianfa,et al. Conditions and mechanism of hydrocarbon accumulation in large reefbank karst oil/gas fields of Tazhong area,Tarim Basin[J]. Acta Petrologica Sinica,2011,27(6):1865-1885.
[51] 耿晓洁,林畅松,吴斌. 古地貌对塔中地区鹰山组岩溶结构及分布的控制作用[J]. 岩性油气藏,2018,30(4):46-55. GENG Xiaojie,LIN Changsong,WU Bin. Controlling of paleogeomorphology to characteristics and distribution of karst structures of Yingshan Formation in Tazhong area[J]. Lithologic Reservoirs,2018,30(4):46-55.
[52] 倪新锋,沈安江,乔占峰,等. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏,2023,35(2):144-158. NI Xinfeng,SHEN Anjiang,QIAO Zhanfeng,et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs,2023,35(2):144-158.
[53] 郑剑,林新,王振宇,等. 塔中北斜坡地区奥陶系鹰山组储层差异性分析[J]. 岩性油气藏,2012,24(5):89-93. ZHENG Jian,LIN Xin,WANG Zhenyu,et al. Reservoir differences of the Ordovician Yingshan Formation in the northern slope of Tazhong[J]. Lithologic Reservoirs,2012,24(5):89-93.
[54] 王清华,杨海军,张银涛,等. 塔里木盆地富满油田富东1井奥陶系重大发现及意义[J]. 中国石油勘探,2023,28(1):47-58. WANG Qinghua,YANG Haijun,ZHANG Yintao,et al. Great discovery and its significance in the Ordovician in Well Fudong 1 in Fuman Oilfield,Tarim Basin[J]. China Petroleum Exploration,2023,28(1):47-58.
[1] 吴松, 冯冰, 于继良, 蓝宝锋, 李龙, 王胜, 沈家宁, 李刚权. 黔北正安地区安场向斜奥陶系五峰组—志留系龙马溪组页岩气富集规律[J]. 岩性油气藏, 2025, 37(1): 182-193.
[2] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[3] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[4] 程静, 闫建平, 宋东江, 廖茂杰, 郭伟, 丁明海, 罗光东, 刘延梅. 川南长宁地区奥陶系五峰组—志留系龙马溪组页岩气储层低电阻率响应特征及主控因素[J]. 岩性油气藏, 2024, 36(3): 31-39.
[5] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[6] 卞保力, 刘海磊, 蒋文龙, 王学勇, 丁修建. 准噶尔盆地盆1井西凹陷石炭系火山岩凝析气藏的发现与勘探启示[J]. 岩性油气藏, 2024, 36(3): 96-105.
[7] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[8] 杜江民, 崔子豪, 贾志伟, 张毅, 聂万才, 龙鹏宇, 刘泊远. 鄂尔多斯盆地苏里格地区奥陶系马家沟组马五5亚段沉积特征[J]. 岩性油气藏, 2023, 35(5): 37-48.
[9] 聂礼尚, 马静辉, 唐小飞, 杨智, 张婉金, 李鸿蕊. 准噶尔盆地东部帐篷沟地区中新生代构造事件及其油气地质意义[J]. 岩性油气藏, 2023, 35(5): 81-91.
[10] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[11] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[12] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[13] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[14] 李凌, 张照坤, 李明隆, 倪佳, 耿超, 唐思哲, 杨文杰, 谭秀成. 四川盆地威远—高石梯地区二叠系栖霞阶层序地层特征及有利储层分布[J]. 岩性油气藏, 2022, 34(6): 32-46.
[15] 陈中红, 柴智. 原油混合后成熟度参数的差异性及其地质意义——以塔北隆起托甫台地区奥陶系为例[J]. 岩性油气藏, 2022, 34(5): 38-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!