岩性油气藏 ›› 2025, Vol. 37 ›› Issue (2): 127138.doi: 10.12108/yxyqc.20250212
• 地质勘探 • 上一篇
梁鑫鑫1, 张银涛2, 陈石1, 谢舟2, 周建勋1, 康鹏飞2, 陈九洲2, 彭梓俊2
LIANG Xinxin1, ZHANG Yintao2, CHEN Shi1, XIE Zhou2, ZHOU Jianxun1, KANG Pengfei2, CHEN Jiuzhou2, PENG Zijun2
摘要: 综合运用野外露头、地震属性、测井以及生产数据等资料,对塔里木盆地富满油田走滑断裂破碎带内部结构进行了研究,并探讨了破碎带的控储作用。研究结果表明:①塔里木盆地皮羌断裂是一条左旋撕裂走滑断层,根据露头变形程度可将破碎带结构分为断层泥、大节理发育区、角砾岩、碎裂岩和裂缝发育带5类。皮羌断裂是由多条次级断层组成的复杂走滑断裂带,发育多核断层破碎带,断层核由碎裂岩和断层泥构成。②富满油田走滑断裂与野外露头断裂发育模式相同,为多核断层破碎带模式。不同应力机制下的走滑断裂破碎带结构差异明显:平移段破碎带宽度最小,平均宽度为368.50 m,破碎带主要发育裂缝;张扭段破碎带宽度大,平均宽度为1 174.00 m,破碎作用主要发生在边界断裂带内部,裂缝和溶洞为主要结构;压扭段破碎带宽度较大,平均宽度为951.25 m,破碎作用不仅在断裂带内部发生,而且对断裂带外围有一定影响,裂缝发育,溶蚀孔洞欠发育。③研究区走滑断裂活动强度与破碎带规模呈正相关关系,断裂活动性越强则破碎带规模越大,储集体越发育;单井产能不仅受储集体规模控制,还受断裂应力环境影响,张扭段、平移段的产能和储集体规模带呈正相关关系,压扭段产能与储集体规模没有明显的相关性。
中图分类号:
[1] 王清华,杨海军,汪如军,等.塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J].中国石油勘探,2021,26(4):58-71. WANG Qinghua,YANG Haijun,WANG Rujun,et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration,2021,26(4):58-71. [2] 田军,王清华,杨海军,等.塔里木盆地油气勘探历程与启示[J].新疆石油地质,2021,42(3):272-282. TIAN Jun,WANG Qinghua,YANG Haijun,et al. Petroleum ex-ploration history and enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology,2021,42(3):272-282. [3] 郑民,彭更新,雷刚林,等.库车坳陷乌什凹陷构造样式及对油气的控制[J].石油勘探与开发,2008,35(4):444-451. ZHENG Min,PENG Gengxin,LEI Ganglin,et al. Structural pattern and its control on hydrocarbon accumulations in Wushi Sag,Kuche Depression,Tarim Basin[J]. Petroleum Exploration and Development,2008,35(4):444-451. [4] QI Jiafu,LEI Ganglin,LI Minggang,et al. Contractional structure model of the transition belt between Kuche Depression and South Tianshan Uplift[J]. Earth Science Frontiers,2009,16(3):120-128. [5] GUO Xiaowen,LIU Keyu,JIA Chengzao,et al. Fluid evolution in the Dabei Gas Field of the Kuqa Depression,Tarim Basin, NW China:Implications for fault-related fluid flow[J]. Marine and Petroleum Geology,2016,78:1-16. [6] 焦方正.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J].石油与天然气地质,2017,38(5):831-839. JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil&Gas Geology,2017,38(5):831-839. [7] 黄少英,张玮,罗彩明,等.塔里木盆地中部满深1断裂带的多期断裂活动[J].地质科学,2021,56(4):1015-1033. HUANG Shaoying,ZHANG Wei,LUO Caiming,et al. The faults and faulting phases of the Manshen-1 fault belt,central Tarim Basin[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2021,56(4):1015-1033. [8] 赵锐,赵腾,李慧莉,等.塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J].特种油气藏. 2019,26(5):8-13. ZHAO Rui,ZHAO Teng,LI Huili,et al. Fault-controlled fracturecavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil&Gas Reservoirs,2019,26(5):8-13. [9] 马庆佑,曹自成,蒋华山,等.塔河-顺北地区走滑断裂带的通源性及其与油气富集的关系[J].海相油气地质,2020,25(4):327-334. MA Qingyou,CAO Zicheng,JIANG Huashan,et al. Sourceconnectivity of strike slip fault zone and its relationship with oil and gas accumulation in Tahe-Shunbei area,Tarim Basin[J]. Marine Origin Petroleum Geology,2020,25(4):327-334. [10] 田军,杨海军,朱永峰,等.塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J].石油学报,2021,42(8):971-985. TIAN Jun,YANG Haijun,ZHU Yongfeng,et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield,Tarim Basin[J]. Acta Petrolei Sinica,2021,42(8):971-985. [11] 漆立新.塔里木盆地顺北超深断溶体油藏特征与启示[J].中国石油勘探,2020,25(1):102-111. QI Lixin. Characteristics and inspiration of ultra-deep faultkarst reservoir in the Shunbei area of the Tarim Basin[J]. China Prtroleum Exploration,2020,25(1):102-111. [12] 孟万斌,肖春晖,冯明石,等.碳酸盐岩成岩作用及其对储层的影响:以塔中顺南地区一间房组为例[J].岩性油气藏, 2016,28(5):26-33. MENG Wanbin,XIAO Chunhui,FENG Mingshi,et al. Carbon-ate diagenesis and its influence on reservoir:A case study from Yijianfang Formation in Shunnan area,central Tarim Basin[J]. Lithologic Reservoirs,2016,28(5):26-33. [13] 倪新锋,沈安江,乔占峰,等.塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J].岩性油气藏,2023,35(2):144-158. NI Xinfeng,SHEN Anjiang,QIAO Zhanfeng,et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs,2023,35(2):144-158. [14] 王清华.塔里木盆地17号走滑断裂带北段差异变形与演化特征[J].现代地质,2023,37(5):1136-1145. WANG Qinghua. Differential deformation and evolution characteristics of the No.17 strike-slip fault zone in the Tarim Basin[J]. Geoscience,2023,37(5):1136-1145. [15] DENG Shang,LI Huili,ZHANG Zhongpei,et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin,2019,103(1):109-137. [16] 朱秀香,赵锐,赵腾.塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J].岩性油气藏,2023,35(5):131-138. ZHU Xiuxiang,ZHAO Rui,ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No.1 fault zone,Tarim Basin[J]. Lithologic Reservoirs,2023,35(5):131-138. [17] 张银涛,陈石,刘强,等.塔里木盆地富满油田FⅠ19断裂发育特征及演化模式[J].现代地质,2023,37(2):283-295. ZHANG Yintao,CHEN Shi,LIU Qiang,et al. Development characteristics and evolution model of F Ⅰ19 fault in Fuman Oil-field,Tarim Basin[J]. Geoscience,2023,37(2):283-295. [18] 邬光辉,马兵山,韩剑发,等.塔里木克拉通盆地中部走滑断裂形成与发育机制[J].石油勘探与开发,2021,48(3):510-520. WU Guanghui,MA Bingshan,HAN Jianfa,et al. Origin and growth mechanisms of strike-slip faults in the central Tarim cra-tonic basin,NW China[J]. Petroleum Exploration and Development,2021,48(3):510-520. [19] GRAHAM B,ANTONELLINI M,AYDIN A. Formation and growth of normal faults in carbonates within a compressive en-vironment[J]. Geology,2003,31(1):11-14. [20] 韩剑发,苏洲,陈利新,等.塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J].石油学报,2019,40(11):1296-1310. HAN Jianfa,SU Zhou,CHEN Lixin,et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica,2019,40(11):1296-1310. [21] 卜旭强,王来源,朱莲花,等.塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J].岩性油气藏,2023,35(3):152-160. BU Xuqiang,WANG Laiyuan,ZHU Lianhua,et al. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin[J]. Lithologic Reservoirs,2023,35(3):152-160. [22] 金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-253. JIN Zhijun,ZHU Dongya,HU Wenxuan,et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica,2006,80(2):245-253. [23] 杨海军,李开开,潘文庆,等.塔中地区奥陶系埋藏热液溶蚀流体活动及其对深部储层的改造作用[J].岩石学报,2012, 28(3):783-792. YANG Haijun,LI Kaikai,PAN Wenqing,et al. Burial hydro-thermal dissolution fluid activity and its transforming effect on the reservoirs in Ordovician in central Tarim[J]. Acta Petro-logica Sinica,2012,28(3):783-792. [24] 李映涛,邓尚,张继标,等.深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式:以塔里木盆地顺北4号断裂带为例[J].地学前缘,2023,30(6):80-94. LI Yingtao,DENG Shang,ZHANG Jibiao,et al. Fault zone architecture of strike-slip faults in deep,tight carbonates and development of reservoir clusters under fault control:A case study in Shunbei Tarim Basin[J]. Earth Science Frontiers,2023,30(6):80-94. [25] 陈叔阳,何云峰,王立鑫,等.塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J].岩性油气藏,2024,36(2):124-135. CHEN Shuyang,HE Yunfeng,WANG Lixin,et al. Architecture characterization and 3D geological modeling of Ordovician car-bonate reservoirs in Shunbei No.1 fault zone,Tarim Basin[J]. Lithologic Reservoirs,2024,36(2):124-135. [26] 邬光辉,张韬,朱永峰,等.碳酸盐岩断裂破碎带结构、分布与发育机制[J].地质科学,2020,55(1):68-80. WU Guanghui,ZHANG Tao,ZHU Yongfeng,et al. The archi-tecture,distribution and growth of carbonate fault damage zone[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2020,55(1):68-80. [27] 宋兴国,陈石,杨明慧,等.塔里木盆地富满油田FⅠ16断裂发育特征及其对油气分布的影响[J].岩性油气藏,2023,35(3):99-109. SONG Xingguo,CHEN Shi,YANG Minghui,et al. Development characteristics of F Ⅰ16 fault in Fuman Oilfield of Tarim Basin and its influence on oil and gas distribution[J]. Litho-logic Reservoirs,2023,35(3):99-109. [28] 薛一帆,文志刚,黄亚浩,等.深层-超深层走滑断裂带储层流体来源与油气成藏过程研究:以塔里木盆地富满油田为例[J].油气藏评价与开发,2024,14(4):549-559. XUE Yifan,WEN Zhigang,HUANG Yahao,et al. Study on reser-voir fluid source and hydrocarbon accumulation process in deep to ultra-deep strike-slip fault zone:A case study of Fuman Oilfield,Tarim Basin[J]. Petroleum Reservoir Evaluation and Development,2024,14(4):549-559. [29] 彭军,夏梦,曹飞,等.塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J].岩性油气藏,2022,34(2):17-30. PENG Jun,XIA Meng,CAO Fei,et al. Sedimentary characteris-tics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area,Tarim Basin[J]. Lithologic Reservoirs, 2022,34(2):17-30. [30] CAINE J S,EVANS J P,FORSTER C B. Fault zone architecture and permeability structure[J]. Geology,1996,24(11):1025-1028. [31] LABAUME P,SHEPPARD S M F,MORETTI I. Fluid flow in cataclastic thrust fault zones in sandstones,Sub-Andean Zone, southern Bolivia[J]. Tectonophysics,2001,340(3/4):141-172. [32] 吴智平,陈伟,薛雁,等.断裂带的结构特征及其对油气的输导和封堵性[J].地质学报,2010,84(4):570-578. WU Zhiping,CHEN Wei,XUE Yan,et al. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica,2010,84(4):570-578. [33] CHESTER F M,LOGAN J M. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone,California[J]. Pure and Applied Geophysics,1986, 124(1):79-106. [34] 史今雄.塔河油田断裂对奥陶系碳酸盐岩缝洞储集体控制作用研究[D].北京:中国石油大学(北京),2020. SHI Jinxiong. Study on controlling effects of faults and fractures on Ordovician carbonate fracture-cavity bodies in Tahe Oilfield[D]. Beijing:China University of Petroleum (Beijing),2020. [35] FAULKNER D R,JACKSON C A L,LUNN R J,et al. A review of recent developments concerning the structure,mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology,2010,32(11):1557-1575. [36] CHOI J H,EDWARDS P,KO K,et al. Definition and classification of fault damage zones:A review and a new methodological approach[J]. Earth-Science Reviews,2016,152:70-87. [37] SAVAGE H M,BRODSKY E E. Collateral damage:Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones[J]. Journal of Geophysical Research,2011,116:B03405. [38] 杨勇,汤良杰,郭颖,等.柯坪冲断带皮羌断裂的新生代构造演化特征[J].中国矿业大学学报,2016,45(6):1204-1210. YANG Yong,TANG Liangjie,GUO Ying,et al. Cenozoic struc-tural evolution characteristics of Piqiang fault,Kalpin thrust belt[J]. Journal of China University of Mining&Technology, 2016,45(6):1204-1210. [39] CHEN Shi,ZHANG Yintao,XIE Zhou,et al. Multi-stages of Paleozoic deformation of the fault system in the Tazhong Uplift, Tarim Basin,NW China:Implications for hydrocarbon accumulation[J]. Journal of Asian Earth Sciences,2024,265:106086. [40] TURNER S A,LIU J G,COSGROVE J W. Structural evolution of the Piqiang Fault Zone,NW Tarim Basin,China[J]. Journal of Asian Earth Sciences,2011,40(1):394-402. [41] 陈宇航,张新涛,余一欣,等.渤中凹陷北部中生界顶面断层破碎带量化研究[J].现代地质,2022,36(4):1035-1042. CHEN Yuhang,ZHANG Xintao,YU Yixin,et al. Quantitative study on the Uppermost Mesozoic fault damage zones in north-ern Bozhong Sag[J]. Geoscience,2022,36(4):1035-1042. [42] 廖宗湖,凡睿,李薇,等.川东北须家河组致密砂岩断缝系统Ⅱ:断层破碎带的结构特征[J].石油科学通报,2020,5(4):449-457. LIAO Zonghu,FAN Rui,LI Wei,et al. Fault-fracture systems of the Xujiahe tight sandstone in the Northeast Sichuan Basin, Part Ⅱ:Structure characteristics of fault damage zones[J]. Petro-leum Science Bulletin,2020,5(4):449-457. [43] 程飞.缝洞型碳酸盐岩油藏储层类型动静态识别方法:以塔里木盆地奥陶系为例[J].岩性油气藏,2017,29(3):76-82. CHENG Fei. Integrated dynamic and static identification method of fractured-vuggy carbonate reservoirs:A case from the Ordo-vician in Tarim Basin[J]. Lithologic Reservoirs,2017,29(3):76-82. [44] 杨鹏飞,张丽娟,郑多明,等.塔里木盆地奥陶系碳酸盐岩大型缝洞集合体定量描述[J].岩性油气藏,2013,25(6):89-94. YANG Pengfei,ZHANG Lijuan,ZHENG Duoming,et al. Quanti-tative characterization of Ordovician carbonate fracture-cavity aggregate in Tarim Basin[J]. Lithologic Reservoirs,2013,25(6):89-94. |
[1] | 陈生华, 王健伟, 刘舒, 严曙梅, 韩建辉, 傅恒, 谢才铸, 孙莉. 东海西湖凹陷孔雀亭地区始新统平湖组中段沉积特征[J]. 岩性油气藏, 2025, 37(2): 103-114. |
[2] | 胡鑫, 朱筱敏, 金绪铃, 黄成, 周越, 程长领, 修金磊, 任新成. 准噶尔盆地永进地区侏罗系齐古组浅水辫状河三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2): 115-126. |
[3] | 熊昶, 王彭, 刘小钰, 王伟, 赵星星, 孙冲. 塔中隆起奥陶系油气性质及运聚富集模式[J]. 岩性油气藏, 2025, 37(1): 53-67. |
[4] | 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66. |
[5] | 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56. |
[6] | 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49. |
[7] | 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135. |
[8] | 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120. |
[9] | 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138. |
[10] | 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田FⅠ16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109. |
[11] | 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160. |
[12] | 韩云浩, 姜振学, 张志遥, 朱光有. 含油气盆地超高油气柱形成的有利地质条件[J]. 岩性油气藏, 2023, 35(2): 125-135. |
[13] | 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158. |
[14] | 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116. |
[15] | 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30. |
|