岩性油气藏 ›› 2025, Vol. 37 ›› Issue (2): 127–138.doi: 10.12108/yxyqc.20250212

• 地质勘探 • 上一篇    

塔里木盆地富满油田走滑断裂多核破碎带地震响应特征

梁鑫鑫1, 张银涛2, 陈石1, 谢舟2, 周建勋1, 康鹏飞2, 陈九洲2, 彭梓俊2   

  1. 1. 中国石油大学(北京)地球科学学院, 北京 102249;
    2. 中国石油塔里木油田公司, 新疆 库尔勒 841000
  • 收稿日期:2024-04-23 修回日期:2024-06-12 发布日期:2025-03-06
  • 第一作者:梁鑫鑫(1995—),男,中国石油大学(北京)在读博士研究生,研究方向为油区构造解析。地址:(102249)北京市昌平区府学路18号。Email:liangxx_0423@163.com。
  • 通信作者: 陈石(1986—),男,博士,副教授,主要从事含油气盆地构造分析的研究与教学工作。Email:chenshi4714@163.com。
  • 基金资助:
    国家自然科学基金“塔里木盆地中部走滑断裂分区差异发育规律与机制研究”(编号:42472186)与国家自然科学基金企业创新发展联合基金项目“塔里木盆地超深层走滑断裂对碳酸盐岩缝洞储层的控制机理研究”(编号:U21-B2062)联合资助。

Seismic response characteristics of strike-slip fault multi-core damage zones in Fuman Oilfield, Tarim Basin

LIANG Xinxin1, ZHANG Yintao2, CHEN Shi1, XIE Zhou2, ZHOU Jianxun1, KANG Pengfei2, CHEN Jiuzhou2, PENG Zijun2   

  1. 1. College of Geosciences, China University of Petroleum(Beijing), Beijing 102249, China;
    2. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
  • Received:2024-04-23 Revised:2024-06-12 Published:2025-03-06

摘要: 综合运用野外露头、地震属性、测井以及生产数据等资料,对塔里木盆地富满油田走滑断裂破碎带内部结构进行了研究,并探讨了破碎带的控储作用。研究结果表明:①塔里木盆地皮羌断裂是一条左旋撕裂走滑断层,根据露头变形程度可将破碎带结构分为断层泥、大节理发育区、角砾岩、碎裂岩和裂缝发育带5类。皮羌断裂是由多条次级断层组成的复杂走滑断裂带,发育多核断层破碎带,断层核由碎裂岩和断层泥构成。②富满油田走滑断裂与野外露头断裂发育模式相同,为多核断层破碎带模式。不同应力机制下的走滑断裂破碎带结构差异明显:平移段破碎带宽度最小,平均宽度为368.50 m,破碎带主要发育裂缝;张扭段破碎带宽度大,平均宽度为1 174.00 m,破碎作用主要发生在边界断裂带内部,裂缝和溶洞为主要结构;压扭段破碎带宽度较大,平均宽度为951.25 m,破碎作用不仅在断裂带内部发生,而且对断裂带外围有一定影响,裂缝发育,溶蚀孔洞欠发育。③研究区走滑断裂活动强度与破碎带规模呈正相关关系,断裂活动性越强则破碎带规模越大,储集体越发育;单井产能不仅受储集体规模控制,还受断裂应力环境影响,张扭段、平移段的产能和储集体规模带呈正相关关系,压扭段产能与储集体规模没有明显的相关性。

关键词: 储集体, 地震属性, 破碎带结构, 单核破碎带, 多核破碎带, 走滑断裂, 皮羌断裂, 富满油田, 塔里木盆地

Abstract: Comprehensively using of outcrop,seismic attributes,logging and production data,the internal structure of the strike-slip fault damage zone in the Fuman Oilfield of Tarim Basin was studied,and the reservoir control function of the damage zone was discussed. The results show that:(1)The Piqiang fault in Tarim Basin is a leftlateral tear strike-slip fault,and the damage zone structure can be divided into five types based on the degree of outcrop deformation:fault gouge,large joint development area,breccia,cataclasite,and fracture development zone. The Piqiang fault is a complex strike-slip fault zone composed of multiple secondary faults,with a multicore fault damage zone,and the fault core is composed of cataclasite and fault gouge.(2)The strike-slip fault of Fuman Oilfield follows the same outcrop development model,which is a multi-core fault damage zone model. The structure of the strike-slip fault damage zone under different stress mechanisms is significantly different: the width of the strike-slip segment damage zone is the smallest,with an average width of 368.50 m,and the damage zone mainly develops fractures;the width of the pull-apart segment damage zone is large,with an average width of 1 174.00 m,and fracturing mainly occurs within the boundary fault zone,characterized by fractures and karst caves;the width of the push-up segment damage zone is relatively large,with an average width of 951.25 m,and fracturing not only occurs within the fault zone but also has a certain impact on the surrounding area of the fault zone,with developed fractures and underdeveloped karst caves.(3)The activity intensity of strike-slip faults is positively correlated with the scale of the damage zone in the study area;the stronger the fault activity,the larger the scale of the damage zone,and the more developed the reservoir. The single well production capacity is not only controlled by the scale of the reservoir but also influenced by the stress environment of the fault. The production capacity and the scale of the reservoir in the pull-apart and strike-slip segments generally show a positive correlation,while there is no obvious correlation between the production capacity and the scale of the reservoir bodies in the push-up segment.

Key words: reservoir, seismic attribute, fault damage zone architecture, single-core fault damage zone, multi-core fault damage zone, strike-slip fault, Piqiang fault, Fuman Oilfield, Tarim Basin

中图分类号: 

  • TE122.2
[1] 王清华,杨海军,汪如军,等.塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新[J].中国石油勘探,2021,26(4):58-71. WANG Qinghua,YANG Haijun,WANG Rujun,et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin[J]. China Petroleum Exploration,2021,26(4):58-71.
[2] 田军,王清华,杨海军,等.塔里木盆地油气勘探历程与启示[J].新疆石油地质,2021,42(3):272-282. TIAN Jun,WANG Qinghua,YANG Haijun,et al. Petroleum ex-ploration history and enlightenment in Tarim Basin[J]. Xinjiang Petroleum Geology,2021,42(3):272-282.
[3] 郑民,彭更新,雷刚林,等.库车坳陷乌什凹陷构造样式及对油气的控制[J].石油勘探与开发,2008,35(4):444-451. ZHENG Min,PENG Gengxin,LEI Ganglin,et al. Structural pattern and its control on hydrocarbon accumulations in Wushi Sag,Kuche Depression,Tarim Basin[J]. Petroleum Exploration and Development,2008,35(4):444-451.
[4] QI Jiafu,LEI Ganglin,LI Minggang,et al. Contractional structure model of the transition belt between Kuche Depression and South Tianshan Uplift[J]. Earth Science Frontiers,2009,16(3):120-128.
[5] GUO Xiaowen,LIU Keyu,JIA Chengzao,et al. Fluid evolution in the Dabei Gas Field of the Kuqa Depression,Tarim Basin, NW China:Implications for fault-related fluid flow[J]. Marine and Petroleum Geology,2016,78:1-16.
[6] 焦方正.塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J].石油与天然气地质,2017,38(5):831-839. JIAO Fangzheng. Significance of oil and gas exploration in NE strike-slip fault belts in Shuntuoguole area of Tarim Basin[J]. Oil&Gas Geology,2017,38(5):831-839.
[7] 黄少英,张玮,罗彩明,等.塔里木盆地中部满深1断裂带的多期断裂活动[J].地质科学,2021,56(4):1015-1033. HUANG Shaoying,ZHANG Wei,LUO Caiming,et al. The faults and faulting phases of the Manshen-1 fault belt,central Tarim Basin[J]. Chinese Journal of Geology (Scientia Geologica Sinica),2021,56(4):1015-1033.
[8] 赵锐,赵腾,李慧莉,等.塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J].特种油气藏. 2019,26(5):8-13. ZHAO Rui,ZHAO Teng,LI Huili,et al. Fault-controlled fracturecavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim Basin[J]. Special Oil&Gas Reservoirs,2019,26(5):8-13.
[9] 马庆佑,曹自成,蒋华山,等.塔河-顺北地区走滑断裂带的通源性及其与油气富集的关系[J].海相油气地质,2020,25(4):327-334. MA Qingyou,CAO Zicheng,JIANG Huashan,et al. Sourceconnectivity of strike slip fault zone and its relationship with oil and gas accumulation in Tahe-Shunbei area,Tarim Basin[J]. Marine Origin Petroleum Geology,2020,25(4):327-334.
[10] 田军,杨海军,朱永峰,等.塔里木盆地富满油田成藏地质条件及勘探开发关键技术[J].石油学报,2021,42(8):971-985. TIAN Jun,YANG Haijun,ZHU Yongfeng,et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield,Tarim Basin[J]. Acta Petrolei Sinica,2021,42(8):971-985.
[11] 漆立新.塔里木盆地顺北超深断溶体油藏特征与启示[J].中国石油勘探,2020,25(1):102-111. QI Lixin. Characteristics and inspiration of ultra-deep faultkarst reservoir in the Shunbei area of the Tarim Basin[J]. China Prtroleum Exploration,2020,25(1):102-111.
[12] 孟万斌,肖春晖,冯明石,等.碳酸盐岩成岩作用及其对储层的影响:以塔中顺南地区一间房组为例[J].岩性油气藏, 2016,28(5):26-33. MENG Wanbin,XIAO Chunhui,FENG Mingshi,et al. Carbon-ate diagenesis and its influence on reservoir:A case study from Yijianfang Formation in Shunnan area,central Tarim Basin[J]. Lithologic Reservoirs,2016,28(5):26-33.
[13] 倪新锋,沈安江,乔占峰,等.塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J].岩性油气藏,2023,35(2):144-158. NI Xinfeng,SHEN Anjiang,QIAO Zhanfeng,et al. Genesis and exploration enlightenment of Ordovician fracture-vuggy carbonate karst reservoirs in Tarim Basin[J]. Lithologic Reservoirs,2023,35(2):144-158.
[14] 王清华.塔里木盆地17号走滑断裂带北段差异变形与演化特征[J].现代地质,2023,37(5):1136-1145. WANG Qinghua. Differential deformation and evolution characteristics of the No.17 strike-slip fault zone in the Tarim Basin[J]. Geoscience,2023,37(5):1136-1145.
[15] DENG Shang,LI Huili,ZHANG Zhongpei,et al. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin,2019,103(1):109-137.
[16] 朱秀香,赵锐,赵腾.塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J].岩性油气藏,2023,35(5):131-138. ZHU Xiuxiang,ZHAO Rui,ZHAO Teng. Characteristics and control effect on reservoir and accumulation of strike-slip segments in Shunbei No.1 fault zone,Tarim Basin[J]. Lithologic Reservoirs,2023,35(5):131-138.
[17] 张银涛,陈石,刘强,等.塔里木盆地富满油田FⅠ19断裂发育特征及演化模式[J].现代地质,2023,37(2):283-295. ZHANG Yintao,CHEN Shi,LIU Qiang,et al. Development characteristics and evolution model of F Ⅰ19 fault in Fuman Oil-field,Tarim Basin[J]. Geoscience,2023,37(2):283-295.
[18] 邬光辉,马兵山,韩剑发,等.塔里木克拉通盆地中部走滑断裂形成与发育机制[J].石油勘探与开发,2021,48(3):510-520. WU Guanghui,MA Bingshan,HAN Jianfa,et al. Origin and growth mechanisms of strike-slip faults in the central Tarim cra-tonic basin,NW China[J]. Petroleum Exploration and Development,2021,48(3):510-520.
[19] GRAHAM B,ANTONELLINI M,AYDIN A. Formation and growth of normal faults in carbonates within a compressive en-vironment[J]. Geology,2003,31(1):11-14.
[20] 韩剑发,苏洲,陈利新,等.塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力[J].石油学报,2019,40(11):1296-1310. HAN Jianfa,SU Zhou,CHEN Lixin,et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin[J]. Acta Petrolei Sinica,2019,40(11):1296-1310.
[21] 卜旭强,王来源,朱莲花,等.塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J].岩性油气藏,2023,35(3):152-160. BU Xuqiang,WANG Laiyuan,ZHU Lianhua,et al. Characteristics and reservoir accumulation model of Ordovician fault-controlled fractured-vuggy reservoirs in Shunbei oil and gas field,Tarim Basin[J]. Lithologic Reservoirs,2023,35(3):152-160.
[22] 金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-253. JIN Zhijun,ZHU Dongya,HU Wenxuan,et al. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica Sinica,2006,80(2):245-253.
[23] 杨海军,李开开,潘文庆,等.塔中地区奥陶系埋藏热液溶蚀流体活动及其对深部储层的改造作用[J].岩石学报,2012, 28(3):783-792. YANG Haijun,LI Kaikai,PAN Wenqing,et al. Burial hydro-thermal dissolution fluid activity and its transforming effect on the reservoirs in Ordovician in central Tarim[J]. Acta Petro-logica Sinica,2012,28(3):783-792.
[24] 李映涛,邓尚,张继标,等.深层致密碳酸盐岩走滑断裂带核带结构与断控储集体簇状发育模式:以塔里木盆地顺北4号断裂带为例[J].地学前缘,2023,30(6):80-94. LI Yingtao,DENG Shang,ZHANG Jibiao,et al. Fault zone architecture of strike-slip faults in deep,tight carbonates and development of reservoir clusters under fault control:A case study in Shunbei Tarim Basin[J]. Earth Science Frontiers,2023,30(6):80-94.
[25] 陈叔阳,何云峰,王立鑫,等.塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J].岩性油气藏,2024,36(2):124-135. CHEN Shuyang,HE Yunfeng,WANG Lixin,et al. Architecture characterization and 3D geological modeling of Ordovician car-bonate reservoirs in Shunbei No.1 fault zone,Tarim Basin[J]. Lithologic Reservoirs,2024,36(2):124-135.
[26] 邬光辉,张韬,朱永峰,等.碳酸盐岩断裂破碎带结构、分布与发育机制[J].地质科学,2020,55(1):68-80. WU Guanghui,ZHANG Tao,ZHU Yongfeng,et al. The archi-tecture,distribution and growth of carbonate fault damage zone[J]. Chinese Journal of Geology (Scientia Geologica Sinica), 2020,55(1):68-80.
[27] 宋兴国,陈石,杨明慧,等.塔里木盆地富满油田FⅠ16断裂发育特征及其对油气分布的影响[J].岩性油气藏,2023,35(3):99-109. SONG Xingguo,CHEN Shi,YANG Minghui,et al. Development characteristics of F Ⅰ16 fault in Fuman Oilfield of Tarim Basin and its influence on oil and gas distribution[J]. Litho-logic Reservoirs,2023,35(3):99-109.
[28] 薛一帆,文志刚,黄亚浩,等.深层-超深层走滑断裂带储层流体来源与油气成藏过程研究:以塔里木盆地富满油田为例[J].油气藏评价与开发,2024,14(4):549-559. XUE Yifan,WEN Zhigang,HUANG Yahao,et al. Study on reser-voir fluid source and hydrocarbon accumulation process in deep to ultra-deep strike-slip fault zone:A case study of Fuman Oilfield,Tarim Basin[J]. Petroleum Reservoir Evaluation and Development,2024,14(4):549-559.
[29] 彭军,夏梦,曹飞,等.塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J].岩性油气藏,2022,34(2):17-30. PENG Jun,XIA Meng,CAO Fei,et al. Sedimentary characteris-tics of Ordovician Yingshan Formation and Yijianfang Formation in Shunbei-1 area,Tarim Basin[J]. Lithologic Reservoirs, 2022,34(2):17-30.
[30] CAINE J S,EVANS J P,FORSTER C B. Fault zone architecture and permeability structure[J]. Geology,1996,24(11):1025-1028.
[31] LABAUME P,SHEPPARD S M F,MORETTI I. Fluid flow in cataclastic thrust fault zones in sandstones,Sub-Andean Zone, southern Bolivia[J]. Tectonophysics,2001,340(3/4):141-172.
[32] 吴智平,陈伟,薛雁,等.断裂带的结构特征及其对油气的输导和封堵性[J].地质学报,2010,84(4):570-578. WU Zhiping,CHEN Wei,XUE Yan,et al. Structural characteristics of faulting zone and its ability in transporting and sealing oil and gas[J]. Acta Geologica Sinica,2010,84(4):570-578.
[33] CHESTER F M,LOGAN J M. Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone,California[J]. Pure and Applied Geophysics,1986, 124(1):79-106.
[34] 史今雄.塔河油田断裂对奥陶系碳酸盐岩缝洞储集体控制作用研究[D].北京:中国石油大学(北京),2020. SHI Jinxiong. Study on controlling effects of faults and fractures on Ordovician carbonate fracture-cavity bodies in Tahe Oilfield[D]. Beijing:China University of Petroleum (Beijing),2020.
[35] FAULKNER D R,JACKSON C A L,LUNN R J,et al. A review of recent developments concerning the structure,mechanics and fluid flow properties of fault zones[J]. Journal of Structural Geology,2010,32(11):1557-1575.
[36] CHOI J H,EDWARDS P,KO K,et al. Definition and classification of fault damage zones:A review and a new methodological approach[J]. Earth-Science Reviews,2016,152:70-87.
[37] SAVAGE H M,BRODSKY E E. Collateral damage:Evolution with displacement of fracture distribution and secondary fault strands in fault damage zones[J]. Journal of Geophysical Research,2011,116:B03405.
[38] 杨勇,汤良杰,郭颖,等.柯坪冲断带皮羌断裂的新生代构造演化特征[J].中国矿业大学学报,2016,45(6):1204-1210. YANG Yong,TANG Liangjie,GUO Ying,et al. Cenozoic struc-tural evolution characteristics of Piqiang fault,Kalpin thrust belt[J]. Journal of China University of Mining&Technology, 2016,45(6):1204-1210.
[39] CHEN Shi,ZHANG Yintao,XIE Zhou,et al. Multi-stages of Paleozoic deformation of the fault system in the Tazhong Uplift, Tarim Basin,NW China:Implications for hydrocarbon accumulation[J]. Journal of Asian Earth Sciences,2024,265:106086.
[40] TURNER S A,LIU J G,COSGROVE J W. Structural evolution of the Piqiang Fault Zone,NW Tarim Basin,China[J]. Journal of Asian Earth Sciences,2011,40(1):394-402.
[41] 陈宇航,张新涛,余一欣,等.渤中凹陷北部中生界顶面断层破碎带量化研究[J].现代地质,2022,36(4):1035-1042. CHEN Yuhang,ZHANG Xintao,YU Yixin,et al. Quantitative study on the Uppermost Mesozoic fault damage zones in north-ern Bozhong Sag[J]. Geoscience,2022,36(4):1035-1042.
[42] 廖宗湖,凡睿,李薇,等.川东北须家河组致密砂岩断缝系统Ⅱ:断层破碎带的结构特征[J].石油科学通报,2020,5(4):449-457. LIAO Zonghu,FAN Rui,LI Wei,et al. Fault-fracture systems of the Xujiahe tight sandstone in the Northeast Sichuan Basin, Part Ⅱ:Structure characteristics of fault damage zones[J]. Petro-leum Science Bulletin,2020,5(4):449-457.
[43] 程飞.缝洞型碳酸盐岩油藏储层类型动静态识别方法:以塔里木盆地奥陶系为例[J].岩性油气藏,2017,29(3):76-82. CHENG Fei. Integrated dynamic and static identification method of fractured-vuggy carbonate reservoirs:A case from the Ordo-vician in Tarim Basin[J]. Lithologic Reservoirs,2017,29(3):76-82.
[44] 杨鹏飞,张丽娟,郑多明,等.塔里木盆地奥陶系碳酸盐岩大型缝洞集合体定量描述[J].岩性油气藏,2013,25(6):89-94. YANG Pengfei,ZHANG Lijuan,ZHENG Duoming,et al. Quanti-tative characterization of Ordovician carbonate fracture-cavity aggregate in Tarim Basin[J]. Lithologic Reservoirs,2013,25(6):89-94.
[1] 陈生华, 王健伟, 刘舒, 严曙梅, 韩建辉, 傅恒, 谢才铸, 孙莉. 东海西湖凹陷孔雀亭地区始新统平湖组中段沉积特征[J]. 岩性油气藏, 2025, 37(2): 103-114.
[2] 胡鑫, 朱筱敏, 金绪铃, 黄成, 周越, 程长领, 修金磊, 任新成. 准噶尔盆地永进地区侏罗系齐古组浅水辫状河三角洲沉积特征[J]. 岩性油气藏, 2025, 37(2): 115-126.
[3] 熊昶, 王彭, 刘小钰, 王伟, 赵星星, 孙冲. 塔中隆起奥陶系油气性质及运聚富集模式[J]. 岩性油气藏, 2025, 37(1): 53-67.
[4] 易珍丽, 石放, 尹太举, 李斌, 李猛, 刘柳, 王铸坤, 余烨. 塔里木盆地哈拉哈塘—哈得地区中生界物源转换及沉积充填响应[J]. 岩性油气藏, 2024, 36(5): 56-66.
[5] 孟庆昊, 张昌民, 张祥辉, 朱锐, 向建波. 塔里木盆地现代分支河流体系形态、分布及其主控因素[J]. 岩性油气藏, 2024, 36(4): 44-56.
[6] 宋志华, 李垒, 雷德文, 张鑫, 凌勋. 改进的U-Net网络小断层识别技术在玛湖凹陷玛中地区三叠系白碱滩组的应用[J]. 岩性油气藏, 2024, 36(3): 40-49.
[7] 陈叔阳, 何云峰, 王立鑫, 尚浩杰, 杨昕睿, 尹艳树. 塔里木盆地顺北1号断裂带奥陶系碳酸盐岩储层结构表征及三维地质建模[J]. 岩性油气藏, 2024, 36(2): 124-135.
[8] 张坦, 贾梦瑶, 孙雅雄, 丁文龙, 石司宇, 范昕禹, 姚威. 四川盆地南部中二叠统茅口组岩溶古地貌恢复及特征[J]. 岩性油气藏, 2024, 36(1): 111-120.
[9] 朱秀香, 赵锐, 赵腾. 塔里木盆地顺北1号断裂带走滑分段特征与控储控藏作用[J]. 岩性油气藏, 2023, 35(5): 131-138.
[10] 宋兴国, 陈石, 杨明慧, 谢舟, 康鹏飞, 李婷, 陈九洲, 彭梓俊. 塔里木盆地富满油田F16断裂发育特征及其对油气分布的影响[J]. 岩性油气藏, 2023, 35(3): 99-109.
[11] 卜旭强, 王来源, 朱莲花, 黄诚, 朱秀香. 塔里木盆地顺北油气田奥陶系断控缝洞型储层特征及成藏模式[J]. 岩性油气藏, 2023, 35(3): 152-160.
[12] 韩云浩, 姜振学, 张志遥, 朱光有. 含油气盆地超高油气柱形成的有利地质条件[J]. 岩性油气藏, 2023, 35(2): 125-135.
[13] 倪新锋, 沈安江, 乔占峰, 郑剑锋, 郑兴平, 杨钊. 塔里木盆地奥陶系缝洞型碳酸盐岩岩溶储层成因及勘探启示[J]. 岩性油气藏, 2023, 35(2): 144-158.
[14] 陈袁, 廖发明, 吕波, 贾伟, 宋秋强, 吴燕, 亢鞠, 鲜让之. 塔里木盆地迪那2气田古近系离散裂缝表征与建模[J]. 岩性油气藏, 2022, 34(3): 104-116.
[15] 彭军, 夏梦, 曹飞, 夏金刚, 李峰. 塔里木盆地顺北一区奥陶系鹰山组与一间房组沉积特征[J]. 岩性油气藏, 2022, 34(2): 17-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!