岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 28–34.doi: 10.12108/yxyqc.20250603

• 地质勘探 • 上一篇    下一篇

陆上洪水型优质砂体形成机理——以兰州窑街地区炭洞沟二号坝洪水沉积为例

李相博, 刘化清, 郝彬, 杨占龙, 张晶, 刘震华, 李智勇, 李在光   

  1. 中国石油勘探开发研究院 西北分院, 兰州 730020
  • 收稿日期:2025-03-12 修回日期:2025-06-20 出版日期:2025-11-01 发布日期:2025-11-07
  • 第一作者:李相博(1965—),男,博士,教授级高级工程师,主要从事陆相盆地沉积与石油地质研究工作。地址:(730020)甘肃省兰州市城关区雁儿湾路535号。Email:lixiangbo911@sina.com。
  • 通信作者: 张晶(1977—),女,博士,高级工程师,主要从事沉积储层学方面的研究工作。Email:251987662@qq.com。
  • 基金资助:
    新型油气勘探开发国家科技重大专项“鄂尔多斯盆地三叠系陆相页岩油勘探开发技术与集成示范”(编号:2025ZD1404800)与国家自然科学基金项目“鄂尔多斯盆地延长组深水块状砂岩形成机理及沉积模式研究”(编号:41772099)联合资助。

Formation mechanism of high-quality sand bodies caused by land floods: A case study of flood sediments of No. 2 dam in Tandonggou, Yaojie area, Lanzhou

LI Xiangbo, LIU Huaqing, HAO Bin, YANG Zhanlong, ZHANG Jing, LIU Zhenhua, LI Zhiyong, LI Zaiguang   

  1. PetroChina Research Institute of Petroleum Exploration & Development-Northwest, Lanzhou 730020, China
  • Received:2025-03-12 Revised:2025-06-20 Online:2025-11-01 Published:2025-11-07

摘要: 通过野外地质考察及实验分析测试,明确了兰州窑街地区炭洞沟泥石流多发地段的洪水沉积特征,并揭示了优质砂体的形成机理。研究结果表明:①兰州窑街地区炭洞沟洪水沉积物分为砂砾石(G)、含砾粗砂(C)、中细砂(MS)及含粉细砂泥质沉积(黏土)(FM)4种类型,自上游向下游有序分布,中细砂(MS)在汇水区下游段连续分布,分选良好,为优质砂体。②研究区洪水沉积物的有序分布与流体搬运过程中泥石流(非牛顿流体)向牵引流(牛顿流体)转化有关,该转化受区域“V”形拐弯河道及地形坡度变化联合控制;牵引流的机械分异作用及高能洪水颗粒间的碰撞破碎是研究区优质砂体形成的主要原因。

关键词: 泥石流, 牵引流, 洪水事件, 优质砂体, C-M图, 现代沉积, 陆相环境

Abstract: Through field geological investigation, and experimental analysis and testing, the characteristics of flood sediments in the debris flow prone areas of Tandonggou in Yaojie area, Lanzhou were clarified, and the formation mechanism of high-quality sand bodies was revealed. The results show that: (1) Flood sediments of Tandonggou in Yaojie area, Lanzhou are classified into four types: gravel(G), coarse sand containing gravel (C), medium fine sand(MS), and silty sediment with fine sand(clay)(FM). They distribute in an orderly manner from upstream to downstream. Medium fine sand(MS)continuously distributes in the downstream section of the catchment area, with good sorting, which is the high-quality sand body.(2) The ordered distribution of flood sediments in study area is related to the transformation of debris flow(non Newtonian fluid)into traction flow(Newtonian fluid)during fluid transport, which is jointly controlled by the"V"-shaped turning river channel and changes in terrain slope in the region.The mechanical differentiation effect of traction and the collision and fragmentation among high-energy flood particles are the main reasons for the formation of high-quality sand bodies in the study area.

Key words: debris flow, traction flow, flood event, high-quality sand body, C-M diagram, modern sedimentation, terrestrial environment

中图分类号: 

  • TE122
[1] WANG Hao, CUI Peng, CARLING P. The sedimentology of high-energy outburst flood deposits: An overview[J]. Earth Science Frontiers, 2021, 28(2): 140-167. 王昊, 崔鹏, CARLING P. 高能洪水沉积研究综述[J]. 地学前缘, 2021, 28(2): 140-167.
[2] MENG Wanbin, LI Min, LIU Jiaduo, et al. Terminal fan sedimentary system of Lulehe Formation in Qianxi area in northern margin of Qaidam Basin[J]. Lithologic Reservoirs, 2010, 22(4): 37-42. 孟万斌, 李敏, 刘家铎, 等. 柴达木盆地北缘潜西地区路乐河组末端扇沉积体系分析[J]. 岩性油气藏, 2010, 22(4): 37-42.
[3] ZHANG Changmin, ZHANG Xianghui, HARTLEY A J, et al. On classification of distributive fluvial system[J]. Lithologic Reservoirs, 2023, 35(4): 1-15. 张昌民, 张祥辉, HARTLEY A J, 等. 分支河流体系分类初探[J]. 岩性油气藏, 2023, 35(4): 1-15.
[4] ZHANG Changmin, HU Wei, ZHU Rui, et al. Concept of distributive fluvial system and its significance to oil and gas exploration and development[J]. Lithologic Reservoirs, 2017, 29(3): 1-9. 张昌民, 胡威, 朱锐, 等. 分支河流体系的概念及其对油气勘探开发的意义[J]. 岩性油气藏, 2017, 29(3): 1-9.
[5] ZHAO Chenglin. Principles of sedimentology[M]. Beijing: Petroleum Industry Press, 2001: 35-42. 赵澄林. 沉积学原理[M]. 北京: 石油工业出版社, 2001: 35-42.
[6] Bureau of Geology and Mineral Resources of Gansu Province. Ministry of geology and mineral resources of People's Republic of China: NO. 19. Regional geology of Gansu province[M]. Beijing: Geological Publishing House, 1989. 甘肃省地质矿产局. 中华人民共和国地质矿产部地质专报: 区域地质, 第19号. 甘肃省区域地质志[M]. 北京: 地质出版社, 1989.
[7] GUO Changbao, ZHAO Gang, SU Qiang, et al. Mechanism analysis of Yaojie 20050906 landslide in Honggu district, Lanzhou[J]. Geotechnical Investigation & Surveying, 2012, 40(1): 1-7. 郭长宝, 赵刚, 苏强, 等. 兰州市红古区窑街20050906滑坡形成机理分析[J]. 工程勘察, 2012, 40(1): 1-7.
[8] PAN Junfu. Investigation and analysis of historical floods in Honggu district[J]. Gansu Water Conservancy and Hydropower Technology, 2016, 52(11): 1-4. 潘俊夫. 红古区历史洪水调查分析[J]. 甘肃水利水电技术, 2016, 52(11): 1-4.
[9] WANG Jinghui, ZHANG Yongjun, YANG Zhiquan, et al. Geological disasters induced by human activities in Lanzhou city, China[J]. Mountain Research, 2020, 38(5): 798-804. 王景辉, 张永军, 杨志全, 等. 兰州城市建设中的人为地质灾害调查[J]. 山地学报, 2020, 38(5): 798-804.
[10] JIANG Ladi, LI Song. Prevention and control mode of geological disasters in Lanzhou[J]. Gansu Geology, 2023, 32(4): 48-58. 蒋拉弟, 李松. 兰州市地质灾害防治模式研究[J]. 甘肃地质, 2023, 32(4): 48-58.
[11] WU Pute, ZHOU Peihua. Research on the flow patterns and erosion transport methods of thin layer water flow on slopes[J]. Journal of Soil and Water Conservation, 1992, 6(1): 19-24. 吴普特, 周佩华. 坡面薄层水流流动型态与侵蚀搬运方式的研究[J]. 水土保持学报, 1992, 6(1): 19-24.
[12] BELL H S. Armored mud balls: Their origin, properties and role in sedimentation[J]. Journal of Geology, 1940, 48(1): 1-31.
[13] LI Xiangbo, YANG Zhanlong, WANG Jing, et al. Mud-coated intraclasts: A criterion for recognizing sandy mass-transport deposits-deep-lacustrine massive sandstone of the Upper Triassic Yanchang Formation, Ordos Basin, central China[J]. Journal of Asian Earth Sciences, 2016, 129(1): 98-116.
[14] YUAN Rui, ZHU Rui, QU Jianhua, et al. A new method of determining grain size based on rock section image[J]. Lithologic Reservoirs, 2015, 27(5): 104-107. 袁瑞, 朱锐, 瞿建华, 等. 一种基于岩石薄片图像的粒度分析新方法[J]. 岩性油气藏, 2015, 27(5): 104-107.
[15] LI Chang'an, ZHANG Yufen. Flood sedimental characteristic and its mark on the middle reaches of Yangtze River[J]. Advances in Water Science, 2004, 15(4): 485-488. 李长安, 张玉芬. 长江中游洪水沉积特征与标志初步研究[J]. 水科学进展, 2004, 15(4): 485-488.
[16] ZHANG Can, ZHOU Aifeng, ZHANG Xiaonan, et al. Identification of palaeoflood events by lacustrine archives and their links to climatic conditions[J]. Progress in Geography, 2015, 34(7): 898-908. 张灿, 周爱锋, 张晓楠, 等. 湖泊沉积记录的古洪水事件识别及与气候关系[J]. 地理科学进展, 2015, 34(7): 898-908.
[17] TAN Chengpeng, YU Xinghe, LIU Beibei, et al. Sedimentary structures formed under upper-flow-regime in seasonal river system: A case study of Bantanzi River, Daihai Lake, Inner Mongolia[J]. Journal of Palaeogeography(Chinese Edition), 2018, 20(6): 929-940. 谭程鹏, 于兴河, 刘蓓蓓, 等. 季节性河流体系高流态沉积构造特征: 以内蒙古岱海湖半滩子河为例[J]. 古地理学报, 2018, 20(6): 929-940.
[18] MAO Genhai. Applied fluid mechanics[M]. Beijing: Higher Education Press, 2006. 毛根海. 应用流体力学[M]. 北京: 高等教育出版社有限公司, 2006.
[19] YANG Shengfa. Characteristics of flow and sediment transport in the inner river broad-shallow shifting reach[D]. Chengdu: Sichuan University, 2003. 杨胜发. 内流河宽浅变迁河段水沙运动规律研究[D]. 成都: 四川大学, 2003.
[20] CORNWELL K. Quaternary break-out flood sediments in the Peshawar basin of northern Pakistan[J]. Geomorphology, 1998, 25(3): 225-248.
[21] CARLING P, FAN Xuanmei. Particle comminution defines megaflood and superflood energetics[J]. Earth-Science Reviews, 2020, 204: 39-58.
[22] LI Xiangbo, LIU Huaqing, YANG Weiwei, et al. A lacustrine basin driven by extreme events of alternate dry-wet climatic cycles: Evidence from outcrops of Yanchang Formation in Upper Triassic, Ordos Basin[J]. Earth Science, 2023, 48(1): 293-316. 李相博, 刘化清, 杨伟伟, 等. 一个由干湿交替极端气候事件主导的内陆湖盆: 来自鄂尔多斯盆地上三叠统延长组露头剖面的沉积学证据[J]. 地球科学, 2023, 48(1): 293-316.
[23] TANG Yong, SONG Yong, GUO Xuguang, et al. Main controlling factors of tight conglomerate oil enrichment in Mahu Sag, the Junggar Basin[J]. Acta Petrolei Sinica, 2022, 43(2): 192-206. 唐勇, 宋永, 郭旭光, 等. 准噶尔盆地玛湖凹陷源上致密砾岩油富集的主控因素[J]. 石油学报, 2022, 43(2): 192-206.
[24] PAN Shuxin, WEI Pingsheng, WANG Tianqi, et al. Sedimentary characteristics of flood-overlake in large depression basin: Taking the 4th Member, Quantou Formation, Lower Cretaceous, in southern Songliao Basin as an example[J]. Geological Review, 2012, 58(1): 41-52. 潘树新, 卫平生, 王天奇, 等. 大型坳陷湖盆"洪水-河漫湖" 沉积: 以干旱背景下的松南泉四段为例[J]. 地质论评, 2012, 58(1): 41-52.
[25] CHEN Xianliang, JI Youliang, YANG Keming, et al. Floodoverlake sedimentary characteristics of the Suining Formation (Lower Jurassic)in Western Sichuan Depression[J]. Acta Sedimentologica Sinica, 2014, 32(5): 912-920. 陈贤良, 纪友亮, 杨克明, 等. 川西坳陷上侏罗统遂宁组洪水-漫湖沉积特征[J]. 沉积学报, 2014, 32(5): 912-920.
[26] LI Huaqi, JIANG Zaixing, QIU Longwei, et al. Seasonal river sedimentation of Xihefu Formation in Kekeya gas condensate field[J]. Xinjiang Geology, 2003, 21(1): 69-73. 李华启, 姜在兴, 邱隆伟, 等. 柯克亚凝析气田中新统西河甫组季节性河流沉积特征研究[J]. 新疆地质, 2003, 21(1): 69-73.
[27] GAO Zhiyong, FENG Jiarui, ZHOU Chuanmin, et al. Arid climate seasonal rivers deposition: A case of Lower Cretaceous in Kuche river outcrop[J]. Acta Sedimentologica Sinica, 2014, 32(6): 1060-1071. 高志勇, 冯佳睿, 周川闽, 等. 干旱气候环境下季节性河流沉积特征: 以库车河剖面下白垩统为例[J]. 沉积学报, 2014, 32 (6): 1060-1071.
[1] 易志凤, 张尚锋, 王雅宁, 徐恩泽, 赵韶华, 王玉瑶. 差异曲率下的曲流河点坝砂体定量表征——以黄河源区白河现代沉积为例[J]. 岩性油气藏, 2022, 34(1): 34-42.
[2] 陈彬滔, 史忠生, 薛罗, 马轮, 赵艳军, 何巍巍, 王磊, 史江龙. 古潜山周缘滩坝沉积模式与岩性油藏勘探实践——以南苏丹Melut盆地Ruman地区Galhak组为例[J]. 岩性油气藏, 2018, 30(6): 37-44.
[3] 庞德新. 砂砾岩储层成因差异及其对储集物性的控制效应----以玛湖凹陷玛 2 井区下乌尔禾组为例[J]. 岩性油气藏, 2015, 27(5): 149-154.
[4] 孙廷彬,国殿斌,李中超,王 玲,尹楠鑫,李胜玉. 鄱阳湖浅水三角洲分支河道分布特征[J]. 岩性油气藏, 2015, 27(5): 144-148.
[5] 郭岭,姜在兴,徐杰. 现代潮白河岩相与沉积相特征[J]. 岩性油气藏, 2011, 23(1): 57-61.
[6] 王权, 刘震, 赵贤正, 金凤鸣, 梁宏斌, 杨德相. 二连盆地地层岩性油藏“多元控砂—四元成藏— 主元富集”与勘探实践( Ⅲ )———“ 主元富集”机理[J]. 岩性油气藏, 2007, 19(4): 13-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!