岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 99106.doi: 10.12108/yxyqc.20250609
刘正文1,2,3,4, 赵锐锐1,2,3,4, 陈阳阳1,2,3,4, 谢俊法5, 臧胜涛5, 秦龙1,2,3,4
LIU Zhengwen1,2,3,4, ZHAO Ruirui1,2,3,4, CHEN Yangyang1,2,3,4, XIE Junfa5, ZANG Shengtao5, QIN Long1,2,3,4
摘要: 为了提高地震速度的自动拾取效率,在常规K均值聚类算法基础上,提出了一种改进的加权K均值聚类方法,将该方法与常规K均值聚类在模型数据和塔里木盆地TD区块进行了应用,对拾取结果进行了分析。研究结果表明:①加权K均值聚类方法是通过设置速度谱幅值阈值剔除弱幅值速度点,设置比例系数,剔除离群速度点,在时间方向上设置时窗,寻找时窗内幅值最大的若干个速度点,以其平均速度与平均时间作为聚类中心的初值,根据初值剔除或者合并部分聚类中心,对不同的速度点赋予不同的权值,剔除每个聚类中心最边缘的速度点,使自动拾取的聚类中心逼近能量团中心,对存在速度反转的拾取结果,利用前2个拾取结果进行多次波的判断与剔除。②加权K均值聚类方法无需提供先验速度信息,实现了全自动的速度拾取,每次迭代均剔除部分速度点,大幅减少所需的迭代次数,加快了速度的计算,同时提高了拾取精度;应用加权K均值聚类方法对模型数据和塔里木盆地TD区块的实际资料进行了全自动速度拾取,比常规K均值聚类法的计算效率约提升了7倍,精度提高了1.7%。
中图分类号:
| [1] SHI Wenwu, YONG Yundong, WU Kailong, et al. Velocity modeling and imaging of volcanic rocks in Laoyemiao area, Bohai Bay Basin[J]. Lithologic Reservoirs, 2021, 33(4): 101-110. 石文武, 雍运动, 吴开龙, 等. 渤海湾盆地老爷庙地区火山岩速度建模与成像[J]. 岩性油气藏, 2021, 33(4): 101-110. [2] WANG Di, YUAN Sanyi, YUAN Huan, et al. Intelligent velocity picking based on unsupervised clustering with the adaptive threshold constraint[J]. Chinese Journal of Geophysics, 2021, 64(3): 1048-1060. 王迪, 袁三一, 袁焕, 等. 基于自适应阈值约束的无监督聚类智能速度拾取[J]. 地球物理学报, 2021, 64(3): 1048-1060. [3] LI Yufeng, SUN Wei, HE Weiwei, et al. Prediction method of shale formation pressure based on pre-stack inversion[J]. Lithologic Reservoirs, 2019, 31(1): 113-121. 李玉凤, 孙炜, 何巍巍, 等. 基于叠前反演的泥页岩地层压力预测方法[J]. 岩性油气藏, 2019, 31(1): 113-121. [4] ZHANG Tianze, WANG Hongjun, ZHANG Liangjie, et al. Application of ray-path elastic impedance inversion in carbonate gas reservoir prediction of the right bank of Amu Darya River [J]. Lithologic Reservoirs, 2024, 36(6): 56-65. 张天择, 王红军, 张良杰, 等. 射线域弹性阻抗反演在阿姆河右岸碳酸盐岩气藏储层预测中的应用[J]. 岩性油气藏, 2024, 36(6): 56-65. [5] ZHAO Liang, SUN Xiaodong, LI Zhenchun, et al. Automatic velocity picking using dual-path convolutional neural network [J]. Oil Geophysical Prospecting, 2024, 59(6): 1206-1216. 赵亮, 孙小东, 李振春, 等. 利用双路卷积神经网络的速度自动拾取方法[J]. 石油地球物理勘探, 2024, 59(6): 1206-1216. [6] TOLDI J L. Velocity analysis without picking[J]. Geophysics, 1989, 54(2): 191-199. [7] ZHANG Jianbin, LIN Niantian, ZHANG Dong, et al. Intelligent picking of velocity spectrum based on nonlinear function [J]. Progress in Geophysics, 2016, 31(2): 856-860. 张建彬, 林年添, 张栋, 等. 基于非线性函数的速度谱智能拾取[J]. 地球物理学进展, 2016, 31(2): 856-860. [8] HOU Bin, GUI Zhixian, XU Huiqun, et al. Application of multiattribute and neural network method to hydrocarbon reservoir prediction[J]. Lithologic Reservoirs, 2010, 22(3): 118-120. 侯斌, 桂志先, 许辉群, 等. 应用多属性神经网络方法预测油气[J]. 岩性油气藏, 2010, 22(3): 118-120. [9] WANG Xiaoguang. Application of self-adaptive BP neural network to the prediction of shear wave velocity[J]. Lithologic Reservoirs, 2013, 25(5): 86-88. 王晓光. 自适应BP神经网络在横波速度预测中的应用[J]. 岩性油气藏, 2013, 25(5): 86-88. [10] ZHANG Hao, ZHU Peimin, GU Yuan, et al. Automatic velocity picking based on deep learning[R]. San Antonio, 89th Society of Exploration Geophysicists International Exposition and Annual Meeting, 2019. [11] WANG Wenlong, MCMECHAN G A, MA Jianwei, et al. Automatic velocity picking from semblances with a new deep-learning regression strategy: Comparison with a classification approach [J]. Geophysics, 2021, 86(2): 1-13. [12] PARK M J, SACCHI M. Automatic velocity analysis using convolutional neural network and transfer learning[J]. Geophysics, 2020, 85(1): 33-43. [13] ZHANG Hao, ZHU Peimin, GU Yuan, et al. Velocity auto-picking from seismic velocity spectra based on deep learning[J]. Geophysical Prospecting for Petroleum, 2019, 58(5): 724-733. 张昊, 朱培民, 顾元, 等. 基于深度学习的地震速度谱自动拾取方法[J]. 石油物探, 2019, 58(5): 724-733. [14] CUI Jiahao, YANG Ping, WANG Hongqiang, et al. Research on automatic picking of seismic velocity spectrum based on deep learning[J]. Chinese Journal of Geophysics, 2022, 65(12): 4832- 4845. 崔家豪, 杨平, 王洪强, 等. 基于深度学习的地震速度谱自动拾取研究[J]. 地球物理学报, 2022, 65(12): 4832-4845. [15] WANG Hongtao, ZHANG Jiangshe, ZHAO Zixiang, et al. Automatic velocity picking using a multi-information fusion deep semantic segmentation network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-10. [16] FABIEN-OUELLET G, SARKAR R. Seismic velocity estimation: A deep recurrent neural-network approach[J]. Geophysics, 2020, 85(1): 21-25. [17] XUE Zhiwen, WU Xinming. Automatic velocity analysis with physics-constrained optimal surface picking[J]. Geophysics, 2023, 88(3): U71-U80. [18] PAN Haixia, GENG Weifeng, CUI Jiahao, et al. Deep learning method for intelligent picking of seismic velocity spectrum[J]. Progress in Geophysics, 2023, 38(6): 2553-2564. 潘海侠, 耿伟峰, 崔家豪, 等. 面向地震速度谱智能拾取的深度学习方法[J]. 地球物理学进展, 2023, 38(6): 2553-2564. [19] ZHANG Yang, ZHAO Pingqi, LU Fengming, et al. Recognition of single well reservoir architecture in alluvial fan based on K-means clustering and Bayes discrimination[J]. Oil Geophysical Prospecting, 2020, 55(4): 873-883. 张阳, 赵平起, 卢凤明, 等. 基于K均值聚类和贝叶斯判别的冲积扇单井储层构型识别[J]. 石油地球物理勘探, 2020, 55 (4): 873-883. [20] ZHAO Xuan, YAN Jiabin, HU Tao. Application of cluster analysis in geophysics[J]. China Science and Technology Information, 2018, 30(15): 103-105. 赵玄, 严家斌, 胡涛. 聚类分析在地球物理中的应用进展[J]. 中国科技信息, 2018, 30(15): 103-105. [21] GALVIS I S, VILLA Y, DUARTE C, et al. Seismic attribute selection and clustering to detect and classify surface waves in multicomponent seismic data by using K-means algorithm[J]. The Leading Edge, 2017, 36(3): 239-248. [22] WANG Lide, WU Jie, XU Xingrong, et al. Intelligent velocity picking considering an expert experience based on the ChanVese model and mean-shift clustering[J]. Frontiers in Digital Humanities, 2023, 11: 1-16. [23] ZHANG Peng, LU Wenkai. Automatic time-domain velocity estimation based on an accelerated clustering method[J]. Geophysics, 2016, 81(4): 13-23. [24] CHEN Yuqing. Automatic semblance picking by a bottom-up clustering method[R]. Beijing, SEG 2018 Workshop: SEG Maximizing Asset Value Through Artificial Intelligence and Machine Learning, 2018. [25] XIE Junfa, XU Xingrong, LAN Yan, et al. Automatic velocity picking with restricted weighted k-means clustering using prior information[J]. Frontiers in Digital Humanities, 2023, 10: 1-14. [26] ZHOU Zhusheng, ZENG Weizu, LIU Siqin, et al. First arrival picking method by seismic multi-attribute based on weighted Kmeans clustering algorithm[J]. Acta Seismologica Sinica, 2020, 42(2): 177-186. 周竹生, 曾维祖, 刘思琴, 等. 基于加权K均值聚类的多属性初至拾取方法[J]. 地震学报, 2020, 42(2): 177-186. [27] XIE Junfa, SUN Chengyu, WANG Xingmou, et al. The multicriteria velocity analysis of seismic data[J]. Geophysical and Geochemical Exploration, 2017, 41(3): 513-520. 谢俊法, 孙成禹, 王兴谋, 等. 地震资料的多准则速度分析方法[J]. 物探与化探, 2017, 41(3): 513-520. [28] LIU Guochang, LI Chao, LIU Xingye, et al. Automatic stackingvelocity estimation using similarity-weighted clustering[J]. Geophysical Prospecting, 2018, 66(4): 649-663. [29] SUN Mengyao, ZHANG Jie. The near-surface velocity reversal and its detection via unsupervised machine learning[J]. Geophysics, 2020, 85(3): 55-63. |
| [1] | 王立德, 王小卫, 周辉, 吴杰, 张志强, 王建乐, 王德英, 冯刚. 一种基于改进共轭梯度法的弹性波全波形反演速度分层建模方法[J]. 岩性油气藏, 2023, 35(4): 61-69. |
| [2] | 王建君, 李井亮, 李林, 马光春, 杜悦, 姜逸明, 刘晓, 于银华. 基于叠后地震数据的裂缝预测与建模——以太阳—大寨地区浅层页岩气储层为例[J]. 岩性油气藏, 2020, 32(5): 122-132. |
| [3] | 徐兴荣, 苏勤, 王劲松, 寇龙江, 文一华, 王靖. 加权MPFI方法及其在三维连片处理中的应用[J]. 岩性油气藏, 2019, 31(1): 122-129. |
| [4] | 刘文卿, 王孝, 胡书华, 张涛, 金保中. 测井与全方位道集联合各向异性参数建模及成像[J]. 岩性油气藏, 2018, 30(6): 83-88. |
| [5] | 韩令贺, 胡自多, 冯会元, 刘威, 杨哲, 王艳香. 井震联合网格层析各向异性速度建模研究及应用[J]. 岩性油气藏, 2018, 30(4): 91-97. |
| [6] | 楚翠金, 夏志林, 杨志强. 延川南区块致密砂岩气测井识别与评价技术[J]. 岩性油气藏, 2017, 29(2): 131-138. |
|
||