岩性油气藏 ›› 2025, Vol. 37 ›› Issue (6): 172179.doi: 10.12108/yxyqc.20250616
• 石油工程与油气田开发 • 上一篇
李佳旻1,2, 张艺钟1,2, 张茂林1,2, 秦博文1,2, 杨宇新1,2
LI Jiamin1,2, ZHANG Yizhong1,2, ZHANG Maolin1,2, QIN Bowen1,2, YANG Yuxin1,2
摘要: 结合细管实验数据,采用灰色关联度法对影响CO2驱油效率的主控因素进行识别与权重赋值,利用核岭回归(KRR)算法对参数集进行训练,并用遗传算法与网格搜索法优化模型超参数,建立了最小混相压力(MMP)预测模型。研究结果表明:①影响CO2驱油的主控因素包括油藏温度、原油组分及注入气组成,纯CO2注入条件下关联度排序依次为:T > x(C2—C4) > M(C7+) > x(C5—C6) > x(CH4+N2)。含杂质CO2注入条件下,杂质类型与含量对MMP的影响程度排序为:x(N2) > x(C1) > x(C2—C4)inj > x(H2S)。②相较Ridge模型和ElasticNet模型,KRR模型预测精度更高、误差更小。其中,KRR-GA模型综合性能最优,其测试集总平均绝对百分比误差(EMAP)为4.11%,均方根误差(ERMS)为0.856 MPa,决定系数(R2)为0.981。③KRR-GA模型对重质原油油藏及常规黑油油藏表现出更优的适用性,而KRR-GS模型更适用于注入气中有较高H2S含量的轻质原油油藏。
中图分类号:
| [1] DAI Bo, WANG Leifei, ZHUANG Jian, et al. Experiment ofminimum miscibie pressure of CO2 flooding in ultra-low permeability reservoir[J]. Lithologic Reservoirs, 2020, 32(2): 129-133. 代波, 王磊飞, 庄建, 等. 超低渗透油藏CO2驱最小混相压力实验[J]. 岩性油气藏, 2020, 32(2): 129-133. [2] CUI Chuanzhi, LI Jing, WU Zhongwei. Simulation of microscopic seepage characteristics of CO2 immiscible flooding under the effect of diffusion and adsorption[J]. Lithologic Reservoirs, 2024, 36(6): 181-188. 崔传智, 李静, 吴忠维. 扩散吸附作用下CO2非混相驱微观渗流特征模拟[J]. 岩性油气藏, 2024, 36(6): 181-188. [3] ELSHARKAWY A M, POETTMANN F H, CHRISTIANSENR L. Measuring CO2 minimum miscibility pressures: Slim-tube orrising-bubble method[J]. Energy & fuels, 1996, 10(2): 443-449. [4] YANG Fulin, YU Peng. Technical standard of minimum miscible flooding pressure determination with slim tube experiment [J]. Special Oil & Gas Reservoirs, 2019, 26(6): 118-122. 杨付林, 喻鹏. 细管实验确定最小混相驱压力技术标准[J]. 特种油气藏, 2019, 26(6): 118-122. [5] YE Anping, GUO Ping, WANG Shaoping, et al. Determinationof minimum miscibility pressure for CO2 flooding by using PRequation of state[J]. Lithologic Reservoirs, 2012, 24(6): 125-128. 叶安平, 郭平, 王绍平, 等. 利用PR状态方程确定CO2驱最小混相压力[J]. 岩性油气藏, 2012, 24(6): 125-128. [6] ZHAO Yuejun, SONG Kaoping, FAN Guangjuan. Research onminimum miscible pressure of supercritical carbon dioxide andcrude oil system under reservoir condition[J]. Journal of Dalian University of Technology, 2017, 57(2): 119-125. 赵跃军, 宋考平, 范广娟. 储层条件下超临界二氧化碳与原油体系最小混相压力研究[J]. 大连理工大学学报, 2017, 57 (2): 119-125. [7] ZHANG Hui. Study on methods for determining minimum miscibility pressure[J]. Petrochemical Technology, 2016, 23(3): 7-8. 张慧. 最小混相压力确定方法研究[J]. 石化技术, 2016, 23 (3): 7-8. [8] GUI Jinyong, LI Shengjun, GAO Jianhu, et al. A random forestsprediction method for gas saturation based on feature variableextension[J]. Lithologic Reservoirs, 2024, 36(2): 65-75. 桂金咏, 李胜军, 高建虎, 等. 基于特征变量扩展的含气饱和度随机森林预测方法[J]. 岩性油气藏, 2024, 36(2): 65-75. [9] CHEN Guangying, LIANG Zhiwu, FU Kaiyun, et al. Predictionof minimum miscibility pressure between carbon dioxide andcrude oil using artificial neural networks[J]. Chemical Industry & Engineering Progress, 2011, 30(Suppl 1): 526. 陈光莹, 梁志武, 符开云, 等. 人工神经网络法预测二氧化碳-原油最小混相压力[J]. 化工进展, 2011, 30(增刊1): 526. [10] YAO Jian. Experimental measurement and modeling study ofminimum miscibility pressure between CO2 and crude oil[D]. Chengdu: Southwest Petroleum University, 2019. 姚健. CO2-原油最小混相压力实验测定及模型研究[D]. 成都: 西南石油大学, 2019. [11] LIN He, DU Jinling, XU Gang, et al. The application of random forest algorithm in predicting the casing deformation ofhydraulic fracturing[J]. Lithologic Reservoirs, 2025, 37(3): 185-193. 林鹤, 杜金玲, 徐刚, 等. 随机森林算法在水力压裂套管变形预测中的应用[J]. 岩性油气藏, 2025, 37(3): 185-193. [12] QIN Bowen, CAI Xulong, NI Peng, et al. Prediction of the minimum miscibility pressure for CO2 flooding based on a physicalinformation neural network algorithm[J]. Measurement Science & Technology, 2024, 35: 1-14. [13] WANG Han, BAI Hongkun, WANG Shiqian, et al. Regionalcarbon emission prediction method based on combined ensemblelearning model[J]. Power Demand Side Management, 2023, 25 (4): 55-59. 王涵, 白宏坤, 王世谦, 等. 基于组合集成学习模型的区域碳排放预测方法研究[J]. 电力需求侧管理, 2023, 25(4): 55-59. [14] CHEN Guangying. Simulation prediction and experimental determination of CO2-oil minimum miscibility pressure[D]. Changsha: Hunan University, 2016. 陈光莹. CO2与原油最小混相压力模拟预测及实验测定[D]. 长沙: 湖南大学, 2016. [15] PAN Yi, ZHAO Qiuxia, SUN Lei, et al. Prediction model ofminimum miscible pressure in CO2 flooding[J]. PetroleumReservoir Evaluation and Development, 2022, 12(5): 748-753. 潘毅, 赵秋霞, 孙雷, 等. CO2驱最小混相压力预测模型研究[J]. 油气藏评价与开发, 2022, 12(5): 748-753. [16] ZHENG Xu, LEI Yuan, DING Wengang, et al. Research on prediction method of the minimum miscible pressure for carbon dioxide flooding in low permeability reservoirs[J]. Contemporary Chemical Industry, 2021, 50(11): 2636-2639. 郑旭, 雷源, 丁文刚, 等. 低渗油藏二氧化碳驱最小混相压力预测方法研究[J]. 当代化工, 2021, 50(11): 2636-2639. [17] SPENCE A S J R, WATKINS R W. The effect of microscopiccore heterogeneity on miscible flood residual oil saturation[R]. Dallas, SPE Annual Technical Conference and Exhibition, 1980. [18] ALSTON R, KOKOLIS G, JAMES C. CO2 minimum miscibility pressure: A correlation for impure CO2 streams and live oilsystems[J]. Society of Petroleum Engineers Journal, 1985, 25 (2): 268-274. [19] EAKIN B, MITCH F. Measurement and correlation of miscibility pressures of reservoir oils[R]. Houston, SPE Annual Technical Conference and Exhibition, 1988. [20] METCALFE R S. Effects of impurities on minimum miscibility pressures and minimum enrichment levels for CO2 and richgas displacements[J]. Society of Petroleum Engineers Journal, 1982, 22(2): 219-225. [21] BON J, EMERA M K, SARMA H K. An experimental studyand genetic algorithm(GA)correlation to explore the effect ofnC5 on impure CO2 minimum miscibility pressure(MMP)[R]. Adelaide, SPE Asia Pacific Oil & Gas Conference and Exhibition, 2006. [22] LIU Hao, LIU Jiahao. Sensitivity analysis of CO2 huff and puffparameters based on ultra-low permeability reservoir[J]. Advances in Fine Petrochemicals, 2023, 24(1): 24-28. 刘浩, 刘嘉豪. 基于特低渗油藏注CO2吞吐参数敏感性分析[J]. 精细石油化工进展, 2023, 24(1): 24-28. [23] SUN Jing, LIU Dehua, ZHANG Liang, et al. Grey correlationanalysis of the influencing factors on production decline in lowpermeability reservoirs[J]. Special Oil & Gas Reservoirs, 2012, 19(2): 90-93. 孙敬, 刘德华, 张亮, 等. 低渗透油藏递减影响因素的灰色关联分析[J]. 特种油气藏, 2012, 19(2): 90-93. [24] QIAN Fuyuan. Study on the influence of formation oil betweenCO2 and minimum miscibility pressure[D]. Daqing: NortheastPetroleum University, 2020. 钱福源. CO2与地层油最小混相压力影响因素的研究[D]. 大庆: 东北石油大学, 2020. [25] HAN Bo, ZHAI Zhiwei, YU Weidong, et al. Dynamic analysisof minimum miscibility pressure during CO2 flooding reservoirsand its influencing factors[J]. Unconventional Oil & Gas, 2022, 9(1): 98-104. 韩波, 翟志伟, 于伟东, 等. 油藏CO2驱过程中最小混相压力的动态变化及其影响因素分析[J]. 非常规油气, 2022, 9(1): 98-104. [26] LONG Zhenyu, WANG Changquan, SHI Lihong, et al. Studyon CO2 solubility model in formation water based on kernelridge regression algorithm[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2023, 38(1): 95-101. 龙震宇, 王长权, 石立红, 等. 基于核岭回归算法的地层水中CO2溶解度模型研究[J]. 西安石油大学学报(自然科学版), 2023, 38(1): 95-101. [27] LI Hu, PU Chunsheng, WU Feipeng. Prediction of minimummiscibility pressure in CO2 flooding based on general regressionneural network[J]. Lithologic Reservoirs, 2012, 24(1): 108-111. 李虎, 蒲春生, 吴飞鹏. 基于广义回归神经网络的CO2驱最小混相压力预测[J]. 岩性油气藏, 2012, 24(1): 108-111. |
| [1] | 马力, 欧阳传湘, 谭钲扬, 王长权, 宋岩, 林飞. 低渗透油藏CO2驱中后期提效方法研究[J]. 岩性油气藏, 2018, 30(2): 139-145. |
| [2] | 杨红, 王宏, 南宇峰, 屈亚宁, 梁凯强, 江绍静. 油藏CO2驱油提高采收率适宜性评价[J]. 岩性油气藏, 2017, 29(3): 140-146. |
|
||