岩性油气藏 ›› 2016, Vol. 28 ›› Issue (5): 123–129.doi: 10.3969/j.issn.1673-8926.2016.05.016

• 讨论与争鸣 • 上一篇    

再谈滑脱效应

李传亮1,朱苏阳1,刘东华2,聂 旷3,邓 鹏1   

  1. (1.西南石油大学 石油与天然气工程学院,成都 610599; 2.中海石油(中国)有限公司 湛江分公司,湛江 524057; 3.中国石油大学(北京) 石油工程学院,北京 102249)
  • 出版日期:2016-09-29 发布日期:2016-09-29
  • 第一作者:李传亮(1962-),男,博士,教授,主要从事油藏工程方面的教学与科研工作。地址:(610599)四川省成都市新都区西南石油大学石油与天然气工程学院。E-mail:cllipe@qq.com。
  • 基金资助:

    国家重大科技专项“特高含水期多层非均质油藏渗流机理及水驱开发规律研究”(编号:2016ZX05054010)和国家自然科学青年基金项目“基于离子变化的高温高压 CO2-烃-地层水热力学实验及理论研究”(编号:51404205)联合资助

Another discussion on slippage effect

Li Chuanliang1, Zhu Suyang1, Liu Donghua2, Nie Kuang3, Deng Peng1   

  1. (1. School of Oil & Natural Gas Engineering,Southwest Petroleum University, Chengdu 610599, China; 2. Zhanjiang Branch of CNOOC Ltd., Zhanjiang 524057, Guangdong, China; 3. College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)
  • Online:2016-09-29 Published:2016-09-29

摘要:

岩石的气测渗透率高于液测渗透率,且具有压力依赖性,该现象被称作滑脱效应或 Klinkenberg 效应。通过理论和测试资料分析,并结合流体力学原理,对该现象进行深入研究后认为,滑脱效应是一个错误认识。气测渗透率的压力依赖性是由于在计算渗透率时气体黏度取值不当所致,气体黏度在低压下随压力变化很大,但计算渗透率时却选用了定值。滑脱效应将使气体的黏度无法测量,从而出现测试悖论。气体分子时刻在做不规则的热运动,会不停地与孔隙壁面发生碰撞,致使气体无法出现滑脱。岩石渗透率的气测值高于液测值,是测试介质的分子尺度与孔隙尺度对比的结果。地下不存在离散形式的自由分子流。孔隙中只存在几个甲烷分子的地层没有开采价值,不应该作为研究对象。滑脱效应对生产实践没有任何指导意义,建议今后不再对气测渗透率进行滑脱校正。

关键词: 地震物理模拟系统, 大尺度, 多通道采集, 高信噪比, 模型形态扫描

Abstract:

Gas permeability of rock is higher than liquid permeability with high dependence of pressure, which is considered to be caused by slippage effect or Klinkenberg effect. Slippage effect means that gas flows through pores without any friction with the wall of pores, which is a wrong view to permeability measurement. The high pressure dependence of gas permeability is the result of misuse of gas viscosity. Gas viscosity changes dramatically with pressure under low pressure condition, but a certain gas viscosity is chosen to determine the gas permeability in laboratory. Slippage effect makes the measurement of gas viscosity impossible. Irregular thermal motions of gas molecules lead to collide into walls of pores at random, which prevents the gas molecules slip from walls of pores. The gas permeability of rocks is higher than liquid permeability, which is the result of comparison of fluid molecule size with the pores of rock. There is no free molecular motion in discrete form underground at all. A pore with only a few methane molecules in it is not worth being exploited, and is not worth being studied. Slippage effect does not make any sense for production practice. It is suggested not to take the slippage correction for gas permeability measurement.

Key words: seismic physical modeling system, large-scale, multi-channel acquisition, high signal to noise ratio, model form scanning

[1]   Klinkenberg L J. The permeability of porous media to liquids and gases[J]. Socar Proceedings,1941,2(2):200-213.

[2]   何更生,唐海.油层物理[M].第2版. 北京:石油工业出版社,2011:57-62,149-150.

He Gengsheng,Tang Hai. Petrophysics[M]. 2nd ed. Beijing:Petroleum Industry Press,2011:57-62,149-150.

  [3]   庄礼贤,尹协远,马晖杨.流体力学[M].第2版.合肥:中国科学技术大学出版社,1997:366-378.

Zhuang Lixian,Yin Xieyuan,Ma Huiyang. Fluid mechanics[M]. 2nd ed. Hefei:Press of University of Science and Technology of China,1997:366-378.

  [4]   贺礼清.工程流体力学[M].北京:石油工业出版社,2004:179-202.

He Liqing. Engineering fluid mechanics[M]. Beijing:Petroleum Industry Press,2004:179-202.

  [5]   李传亮.滑脱效应其实并不存在[J].天然气工业,2007,27(10):85-87.

Li Chuanliang. Is there really slippage effect?[J]. Natural Gas Industry,2007,27(10):85-87.

  [6]   章威廉,杨茂荣.大学物理学(上册)[M].济南:山东教育出版社,1989:144-145.

Zhang Weilian,Yang Maorong. College physics(Volume 1)[M].Jinan:Shandong Education Press,1989:144-145.

  [7]   孙良田.油层物理实验[M].北京:石油工业出版社,1992:89-94.

Sun Liangtian. Experiments in petrophysics[M]. Beijing:Petroleum Industry Press,1992:89-94.

  [8]   Lee A L,Gonzalez M H,Eakin B E. The viscosity of natural gases[J].Trans AIME,1966,237:997-1000.

  [9]   Kestin J,Leidenfrost W. An absolute determination of the viscosity of eleven gases over a range of pressures[J]. Physica,1959,25:1033-1062.

[10]   袁淋,李晓平,张璐,等.非均质底水气藏水平井井筒流量及压力剖面研究[J].岩性油气藏,2014,26(5):124-128.

Yuan Lin,Li Xiaoping,Zhang Lu,et al. Study on the flow rate and pressure profile of horizontal well inheterogeneous gas reservoir with bottom water[J]. Lithologic Reservoirs,2014,26(5):124-128.

[11]   闫霞,李小军,赵辉,等.煤层气井井间干扰研究及应用[J].岩性油气藏,2015,27(2):126-132.

Yan Xia,Li Xiaojun,Zhao Hui,et al. Research on well interference of coalbed methane wells and its application[J]. Lithologic Rese?rvoirs,2015,27(2):126-132.

[12]   刘通,任桂蓉,赵容怀.非环状流气井两相流机理模型[J].岩性油气藏,2013,25(6):103-106.

Liu Tong,Ren Guirong,Zhao Ronghuai. Two?phase flow model for non?annular flow in gas wells[J]. Lithologic Reservoirs,2013,25(6):103-106.

[13]   李士伦.天然气工程[M].第2版.北京:石油工业出版社,2008:24.

Li Shilun. Natural gas engineering[M]. 2nd ed. Beijing:Petroleum Industry Press,2008:24.

[14]   Javadpour F. Nanopores and apparent permeability of gas flow in mudrocks(shales and siltstone)[J]. Journal of Canadian Petroleum Technology,2009,48(8):16-21.

[15]   贝尔 J. 多孔介质流体动力学[M].李竞生,陈崇希,译.北京:中国建筑工业出版社,1983:13.

Bear J. Dynamics of fluids in porous media[M]. Translated by Li Jingsheng,Chen Chongxi. Beijing:China Building Industry Press,1983:13.

[16]   李传亮.油藏工程原理[M].第2版.北京:石油工业出版社,2011:48-51.

Li Chuanliang. Fundamentals of reservoir engineering[M]. 2nd ed. Beijing:Petroleum Industry Press,2011:48-51.

[17]   李传亮,杨永全.启动压力梯度其实并不存在[J].西南石油大学学报(自然科学版),2008,30(3):167-170.

Li Chuanliang,Yang Yongquan. There is not a starting pressure gradient in low permeability reservoirs at all[J]. Journal of Southwest Petroleum University(Science & Technology Edition),2008,30(3): 167-170.
[1] 王国庆,魏建新,刘伟方,狄帮让,雍学善,高建虎. 大型多道地震物理模拟系统设计方案及功能[J]. 岩性油气藏, 2016, 28(6): 95-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 庞雄奇, 陈冬霞, 张 俊. 隐蔽油气藏的概念与分类及其在实际应用中需要注意的问题[J]. 岩性油气藏, 2007, 19(1): 1 -8 .
[2] 雷卞军,张吉,王彩丽,王晓蓉,李世临,刘斌. 高分辨率层序地层对微相和储层的控制作者用——以靖边气田统5井区马五段上部为例[J]. 岩性油气藏, 2008, 20(1): 1 -7 .
[3] 杨杰,卫平生,李相博. 石油地震地质学的基本概念、内容和研究方法[J]. 岩性油气藏, 2010, 22(1): 1 -6 .
[4] 王延奇,胡明毅,刘富艳,王辉,胡治华. 鄂西利川见天坝长兴组海绵礁岩石类型及礁体演化阶段[J]. 岩性油气藏, 2008, 20(3): 44 -48 .
[5] 代黎明, 李建平, 周心怀, 崔忠国, 程建春. 渤海海域新近系浅水三角洲沉积体系分析[J]. 岩性油气藏, 2007, 19(4): 75 -81 .
[6] 段友祥, 曹婧, 孙歧峰. 自适应倾角导向技术在断层识别中的应用[J]. 岩性油气藏, 2017, 29(4): 101 -107 .
[7] 黄龙,田景春,肖玲,王峰. 鄂尔多斯盆地富县地区长6砂岩储层特征及评价[J]. 岩性油气藏, 2008, 20(1): 83 -88 .
[8] 杨仕维,李建明. 震积岩特征综述及地质意义[J]. 岩性油气藏, 2008, 20(1): 89 -94 .
[9] 李传亮,涂兴万. 储层岩石的2种应力敏感机制——应力敏感有利于驱油[J]. 岩性油气藏, 2008, 20(1): 111 -113 .
[10] 李君, 黄志龙, 李佳, 柳波. 松辽盆地东南隆起区长期隆升背景下的油气成藏模式[J]. 岩性油气藏, 2007, 19(1): 57 -61 .