Lithologic Reservoirs ›› 2020, Vol. 32 ›› Issue (6): 50-61.doi: 10.12108/yxyqc.20200605

• PETROLEUM GEOLOGY • Previous Articles     Next Articles

Division of sedimentary cycle of sandy conglomerate body and its relationship with physical properties: a case study from the upper submenber of the fourth member of Shahejie Formation in Y920 block of northern steep slope zone in Dongying Sag

QING Fan1,2, YAN Jianping1,2,3, WANG Jun4, GENG Bin4, WANG Min4, ZHAO Zhenyu5, CHAO Jing4   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, Ministry of Education, China University of Geosciences, Wuhan 430074, China;
    4. Institute of Exploration and Development, Shengli Oilfield Company, Sinopec, Dongying 257015, Shandong, China;
    5. PetroChina Research Institute of Petroleum Exploration & Development, Beijing 100083, China
  • Received:2020-02-09 Revised:2020-04-20 Online:2020-12-01 Published:2020-10-30

Abstract: The sandy conglomerate reservoirs have complex lithology and strong heterogeneity,and the fan bodies are stacked in multiple stages,making it difficult to divide the sedimentary cycle. Based on core and FMI images, with the well logging information wavelet transform technology as the core,and with 3D seismic as the constraint,the method of sedimentary cycle division of sandy conglomerate fan body was established by taking the upper submenber of the fourth member of Shahejie Formation in Y920 block of the northern steep slope zone in Dongying Sag as the research object. Based on core and FMI images,the interface of sedimentary cycle can be identified intuitively,and then conventional logging data can be calibrated. The wavelet coefficient curve showing oscillation characteristics after the wavelet transform of logging information can reflect the response characteristics of the sedimentary interface,and the sedimentary period of a single well can be divided quantitatively by combining the scale factor of power spectrum screening. Through the well-seismic combination,the isochronic comparison of the cycle interfaces in the entire region was achieved,and the sandy conglomerate body in Y920 block was divided into 8 sedimentary cycles. The development of the sedimentary cycle controls the distribution of sedimentary facies and lithology,which is also closely related to the distribution of physical properties. The results show that the strata in the study area show good physical properties in the middle and upper part of sedimentary cycle in the initial stage of retrograde deposition(root-middle fan)from the bottom to the top(8 to 1 sedimentary cycle),and the strata show good physical properties in the entire sedimentary cycle of the intermediate deposition stage(middle fan)and the middle and lower parts of sedimentary cycle in the final deposition stage(middle-bottom fan). Furthermore,the thickness of the effective reservoirs in each cycle of a single well was counted,and the planar distribution characteristics of the effective reservoirs were described in cycles. It is found that the northwest of 3,4 and 5 sedimentary cycles is the favorable reservoir distribution range of Y920 block. The research results provide a basis for fine exploration and development of sandy conglomerate reservoirs in the northern steep slope zone of Dongying Sag.

Key words: sandy conglomerate, sedimentary cycle, wavelet transform, physical properties, effective reservoir distribution, Dongying Sag

CLC Number: 

  • TE121.3
[1] LEGGITT S M, WALKER R G, EYLES C. Control of reservoir geometry and stratigraphic trapping by erosion surface E5 in the Pembina-Carrot Creek area,Upper Cretaceous Cardium Formation, Alberta, Canada(1). AAPG Bulletin, 1990, 74(8):1165-1182.
[2] HICKSON T A, LOWE D R. Facies architecture of a submarine fan channel-levee complex:the Juniper Ridge conglomerate, Coalinga, California. Sedimentology, 2002, 49(2):335-362.
[3] ULIANA M A, LEGARRETA L. Hydrocarbons habitat in a Triassic-to-Cretaceous Sub-Andean setting:Neuquén Basin, Argentina. Journal of Petroleum Geology, 1993, 16(4):397-420.
[4] 袁静, 袁炳存. 永安镇地区永1砾岩体储层微观特征. 石油大学学报(自然科学版), 1999, 23(1):13-16. YUAN J,YUAN B C. Reservoir micro-properties of Yong 1 conglomerate body in Yonganzhen area. Journal of the University of Petroleum, China(Edition of Natural Science), 1999, 23(1):13-16.
[5] 潘建国, 王国栋, 曲永强, 等. 砂砾岩成岩圈闭形成与特征:以准噶尔盆地玛湖凹陷三叠系百口泉组为例. 天然气地球科学, 2015, 26(增刊1):41-49. PAN J G, WANG G D, QU Y Q, et al. Formation mechanism and characteristics of conglomerate diagenetic trap:a case study of the Triassic Baikouquan Formation in the Mahu Sag, Junggar Basin. Natural Gas Geoscience, 2015, 26(Suppl 1):41-49.
[6] 曹辉兰, 华仁民, 纪友亮, 等. 扇三角洲砂砾岩储层沉积特征及与储层物性的关系:以罗家油田沙四段砂砾岩体为例. 高校地质学报, 2001, 7(2):222-229. CAO H L, HUA R M, JI Y L, et al. Depositional characteristics of sandstone and conglomerate reservoirs of fan delta and relationship to reservoirs' physical properties:Taking the fourth member of Shahejie Formation, Luojia Oilfield, Zhanhua Depression for an example. Geological Journal of China Universities, 2001, 7(2):222-229.
[7] 谯汉生. 渤海湾盆地油气勘探现状与前景. 勘探家, 1999, 4(1):18-21. QIAO H S. The current status and prospect of petroleum exploration in the Bohai Bay Basin. Petroleum Explorationist, 1999, 4(1):18-21.
[8] 苑伯超, 肖文华, 魏浩元, 等. 酒泉盆地鸭儿峡地区白垩系下沟组砂砾岩储层特征及主控因素. 岩性油气藏, 2018, 30(3):61-70. YUAN B C, XIAO W H, WEI H Y, et al. Characteristics and controlling factors of glutenite reservoir of Cretaceous Xiagou Formation in Ya'erxia area, Jiuquan Basin. Lithologic Reservoirs, 2018, 30(3):61-70.
[9] 李亚哲, 王力宝, 郭华军, 等. 基于地震波形指示反演的砂砾岩储层预测:以中拐-玛南地区上乌尔禾组为例. 岩性油气藏, 2019, 31(2):134-142. LI Y Z, WANG L B, GUO H J, et al. Prediction of glutenite reservoir based on seismic waveform indicative inversion:a case study of Upper Urho Formation in Zhongguai-Manan area. Lithologic Reservoirs, 2019, 31(2):134-142.
[10] 曹茜, 王志章, 王野, 等. 砂砾岩储层分布非均质性和质量非均质性研究:以克拉玛依油田五2东区克上组为例. 岩性油气藏, 2018, 30(2):129-138. CAO Q, WANG Z Z, WANG Y, et al. Distribution and quality heterogeneity of conglomerate reservoir:a case from upper Karamay Formation in eastern block Wu 2, Karamay Oilfield. Lithologic Reservoirs, 2018, 30(2):129-138.
[11] 曹刚, 邹婧芸, 曲全工, 等. 东营凹陷永1块沙四段砂砾岩体有效储层控制因素分析. 岩性油气藏, 2016, 28(1):30-37. CAO G, ZOU J Y, QU Q G, et al. Controlling factors of effective reservoirs in glutenite body of the fourth member of Shahejie Formation in Yong 1 block, Dongying Sag. Lithologic Reservoirs, 2016, 28(1):30-37.
[12] 吴孔友, 秦磊, 谭明友, 等. 构造对东营凹陷深层砂体发育的控制作用. 沉积学报, 2014, 32(5):893-900. WU K Y, QIN L, TAN M Y, et al. Research on structures controlling the development of deep sand bodies in Dongying Depression. Acta Sedimentologica Sinica, 2014, 32(5):893-900.
[13] 孔凡仙. 东营凹陷北带砂砾岩扇体勘探技术与实践. 石油学报, 2000, 21(5):27-31. KONG F X. Exploration technique and practice of sandy-conglomeratic fans in northern part of Dongying Depression. Acta Petrolei Sinica, 2000, 21(5):27-31.
[14] 闫建平, 蔡进功, 赵铭海, 等. 电成像测井在砂砾岩体沉积特征研究中的应用. 石油勘探与开发, 2011, 38(4):444-451. YAN J P, CAI J G, ZHAO M H, et al. Application of electrical image logging in the study of sedimentary characteristics of sandy conglomerates. Petroleum Exploration and Development, 2011, 38(4):444-451.
[15] 马永平, 王国栋, 张献文, 等. 粗粒沉积次生孔隙发育模式:以准噶尔盆地西北缘二叠系夏子街组为例. 岩性油气藏, 2019, 31(5):34-43. MA Y P, WANG G D, ZHANG X W, et al. Development model of secondary pores in coarse-grained deposits:a case study of Permian Xiazijie Formation in northwestern margin of Junggar Basin. Lithologic Reservoirs, 2019, 31(5):34-43.
[16] 吴伟, 邵广辉, 桂鹏飞, 等. 基于电成像资料的裂缝有效性评价和储集层品质分类:以鸭儿峡油田白垩系为例. 岩性油气藏, 2019, 31(6):102-108. WU W, SHAO G H, GUI P F, et al. Fracture effectiveness evaluation and reservoir quality classification based on electrical imaging data:a case study of Cretaceous in Yaerxia Oilfield. Lithologic Reservoirs, 2019, 31(6):102-108.
[17] 范振峰, 毕彩芹, 丁俊侠. 车镇凹陷北部陡坡带砂砾岩体成藏机理:以车66扇体为例. 油气地质与采收率, 2007, 14(6):39-42. FAN Z F, BI C Q, DING J X. Hydrocarbon accumulation mechanism of sandstone-conglomerate bodies in north abrupt slope zone, Chezhen Depression:an example from Fan Che 66. Petroleum Geology and Recovery Efficiency, 2007, 14(6):39-42.
[18] 卢双舫, 谷美维, 张飞飞, 等. 徐家围子断陷沙河子组致密砂砾岩气藏的成藏期次及类型划分.天然气工业, 2017, 37(6):12-21. LU S F, GU M W, ZHANG F F, et al. Hydrocarbon accumulation stages and type division of Shahezi Fm tight glutenite gas reservoirs in the Xujiaweizi Fault Depression, Songliao Basin. Natural Gas Industry, 2017, 37(6):12-21.
[19] 王清斌, 牛成民, 刘晓健, 等. 渤中凹陷深层砂砾岩气藏油气充注与储层致密化. 天然气工业, 2019, 39(5):25-33. WANG Q B, NIU C M, LIU X J, et al. Hydrocarbon charging and reservoir densification of the deep-seated glutenite gas reservoirs in the Bozhong Sag. Natural Gas Industry, 2019, 39(5):25-33.
[20] 刘传虎. 砂砾岩扇体发育特征及地震描述技术. 石油物探, 2001, 40(1):64-72. LIU C H. Features and seismic description of glutenite segment. Geophysical Prospecting for Petroleum, 2001, 40(1):64-72.
[21] 邹伟, 邹杰.时频技术在砂砾岩体沉积期次划分中的应用方法初探. 新疆地质, 2011, 29(1):110-112. ZOU W, ZOU J. Division of sedimentary cycle of the sand conglomerate mass with time-frequency analysis. Xinjiang Geology, 2011, 29(1):110-112.
[22] 朱剑兵, 纪友亮, 赵培坤, 等. 小波变换在层序地层单元自动划分中的应用. 石油勘探与开发, 2005, 32(1):84-86. ZHU J B, JI Y L, ZHAO P K, et al. Application of wavelet transform in auto-identify units of stratigraphy sequence. Petroleum Exploration and Development, 2005, 32(1):84-86.
[23] 房文静, 范宜仁, 李霞. Morlet小波用于测井沉积旋回多尺度特性研究. 物探化探计算技术, 2007, 29(2):109-111. FANG W J, FAN Y R, LI X. The multi-scale characteristic study of sedimentary cycle in well logging data using morlet wavelet. Computing Techniques for Geophysical and Geochemical Exploration, 2007, 29(2):109-111.
[24] 闫建平, 蔡进功, 赵铭海, 等. 测井信息用于层序地层单元划分及对比研究综述. 地层学杂志, 2009, 33(4):441-450. YAN J P, CAI J G, ZHAO M H, et al. Advances in the study of sequence stratigraphic division and correlation using well log information. Journal of Stratigraphy, 2009, 33(4):441-450.
[25] 余继峰, 李增学. 测井数据小波变换及其地质意义. 中国矿业大学学, 2003, 32(3):336-339. YU J F, LI Z X. Wavelet transform of logging data and its geological significance. Journal of China University of Mining and Technology, 2003, 32(3):336-339.
[26] 闫建平, 蔡进功, 李尊芝. 基于小波变换的功率谱方法及其在沉积单元界面定量划分中的应用. 中国海上油气, 2008, 20(2):96-98. YAN J P, CAI J G, LI Z Z. A power spectrum method based on wavelet transformation and its application in quantitatively dividing interfaces of sedimentary unit. China Offshore Oil and Gas, 2008, 20(2):96-98.
[27] 纪友亮, 张世奇, 张宏, 等. 层序地层学原理及层序成因机制模式. 北京:地质出版社, 1998:17-20. JI Y L, ZHANG S Q, ZHANG H, et al. Sequence stratigraphy principle and sequence genesis models. Beiing:Geological Publishing House, 1998:17-20.
[28] 伍新和, 林良彪, 张玺华. 地震波形分析技术在川西新场地区沉积微相研究中的应用. 成都理工大学学报(自然科学版), 2013, 40(4):409-416. WU X H, LIN L B, ZHANG X H. Application of seismic waveform analysis technology in studying sedimentary microfacies of Xinchang region in West Sichuan, China. Journal of Chengdu University of Technology(Science and Technology Edition), 2013, 40(4):409-416.
[29] 钟大康, 朱筱敏, 张枝焕, 等. 东营凹陷古近系砂岩储集层物性控制因素评价. 石油勘探与开发, 2003, 30(3):95-98. ZHONG D K, ZHU X M, ZHANG Z H, et al. Controlling factors of sandstone reservoir of the Paleogene in Dongying Sag. Petroleum Exploration and Development, 2003, 30(3):95-98.
[30] 闫建平, 言语, 李尊芝, 等.砂砾岩储层物性演化及影响因素研究:以东营凹陷北部陡坡带为例. 岩性油气藏, 2016, 28(2):1-6. YAN J P, YAN Y, LI Z Z, et al. Physical property evolution of glutenite reservoir and its influencing factors:a case study from northern steep slope zone in Dongying Sag. Lithologic Reservoirs, 2016, 28(2):1-6.
[31] 操应长, 金杰华, 王艳忠, 等. 东营凹陷北带古近系沙四段砂砾岩体沉积特征及沉积模式. 沉积与特提斯地质, 2014, 34(4):13-23. CAO Y C, JIN J H, WANG Y Z, et al. Sedimentary characteristics and model for the sandstones and conglomerates in the 4 th member of the Palaeogene Shahejie Formation, northern Dongying Depression, Shandong. Sedimentary Geology and Tethyan Geology, 2014, 34(4):13-23.
[32] 操应长, 王艳忠, 徐涛玉, 等. 东营凹陷西部沙四上亚段滩坝砂体有效储层的物性下限及控制因素. 沉积学报, 2009, 27(2):230-237. CAO Y C, WANG Y Z, XU T Y, et al. The Petrophysical parameter cutoff and controlling factors of the effective reservoir of beach and bar sandbodies of the upper part of the fourth member of the Shahejie Formation in west part of Dongying Depression. Acta Sedimentologica Sinica, 2009, 27(2):230-237.
[33] 万玲, 孙岩, 魏国齐. 确定储集层物性参数下限的一种新方法及其应用:以鄂尔多斯盆地中部气田为例. 沉积学报, 1999, 17(3):454-457. WAN L, SUN Y, WEI G Q. A new method used to determine the lower limit of the petrophysical parameters for reservoir and its application:a case study on Zhongbu Gas Field in Ordos Basin. Acta Sedimentologica Sinica, 1999, 17(3):454-457.
[1] QIN Zhengshan, HE Yongming, DING Yangyang, LI Baihong, SUN Shuangshuang. Water invasion performance and main controlling factors for edge-water gas reservoirs [J]. Lithologic Reservoirs, 2024, 36(4): 178-188.
[2] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[3] WANG Tianhai, XU Duonian, WU Tao, GUAN Xin, XIE Zaibo, TAO Huifei. Sedimentary facies distribution characteristics and sedimentary model of Triassic Baikouquan Formation in Shawan Sag,Junggar Basin [J]. Lithologic Reservoirs, 2024, 36(1): 98-110.
[4] HU Zhonggui, WANG Jixuan, LI Shilin, GUO Yanbo, ZUO Yun'an, PANG Yulai. High-frequency sequence division and geological significance of dolomiteevaporite paragenetic strata of Cambrian Gaotai Formation in eastern Sichuan Basin [J]. Lithologic Reservoirs, 2023, 35(2): 113-124.
[5] YANG Fan, BIAN Baoli, LIU Huiying, YAO Zongquan, YOU Xincai, LIU Hailei, WEI Yanzhao. Sedimentary characteristics of fan delta in restricted lacustrine basin of Permian Xiazijie Formation in Mahu Sag [J]. Lithologic Reservoirs, 2022, 34(5): 63-72.
[6] WANG Maozhen, WU Kui, GUO Tao, HUI Guanzhou, HAO Yiwei. Reservoir characteristics and controlling factors of the second member of Paleogene Shahejie Formation in southeastern margin of Liaodong Sag [J]. Lithologic Reservoirs, 2022, 34(4): 66-78.
[7] HUANG Yarui, YANG Jianping, LU Huidong, LI Yuzhi, HUANG Zhijia, DANG Pengsheng, FANG Ping, MU Yingshun. Sedimentary characteristics of gravity flow of middle Es32 member in Yingbei area, Dongying Sag [J]. Lithologic Reservoirs, 2022, 34(1): 14-23.
[8] HE Xian, YAN Jianping, WANG Min, WANG Jun, GENG Bin, LI Zhipeng, ZHONG Guanghai, ZHANG Ruixiang. Relationship between pore structure and oil production capacity of low permeability sandstone: A case study of block F154 in south slope of Dongying Sag [J]. Lithologic Reservoirs, 2022, 34(1): 106-117.
[9] ZHANG Benjian, TIAN Yunying, ZENG Qi, YIN Hong, DING Xiong. Sedimentary characteristics of sandy conglomerates of Triassic Xu-3 member in northwestern Sichuan Basin [J]. Lithologic Reservoirs, 2021, 33(4): 20-28.
[10] CHEN Yiting, LIU Luofu, WANG Mengyao, DOU Wenchao, XU Zhengjian. Characteristics and controlling factors of Chang 6 and Chang 7 reservoirs in southwestern Ordos Basin [J]. Lithologic Reservoirs, 2020, 32(1): 51-65.
[11] WU Jiayang, LYU Zhengxiang, QING Yuanhua, YANG Jiajing, JIN Tao. Genesis of authigenic chlorite in tight oil reservoirs and its influence on physical properties: a case study of Shaximiao Formation in NE of central Sichuan Basin [J]. Lithologic Reservoirs, 2020, 32(1): 76-85.
[12] CAO Qian, WANG Zhizhang, WANG Ye, ZHANG Dongliang, GONG Yanjie, ZOU Kaizhen, FAN Tailiang. Distribution and quality heterogeneity of conglomerate reservoir: a case from upper Karamay Formation in eastern block Wu 2, Karamay Oilfield [J]. Lithologic Reservoirs, 2018, 30(2): 129-138.
[13] YAN Jianping, LIANG Qiang, GENG Bin, LAI Fuqiang, WEN Danni, WANG Zhoufeng. Relationship between micro-pore characteristics and pore structure of low permeability sandstone: a case of the fourth member of Shahejie Formation in southern slope of Dongying Sag [J]. Lithologic Reservoirs, 2017, 29(3): 18-26.
[14] SUN Shuyang, ZHU Xiaomin, WEI Wei, ZHU Shifa, HE Mingwei, LIU Wei, WU Jianping. Characteristics of dolomitic reservoirs of A'ershan Formation in Bayindulan Sag,Erlian Basin [J]. Lithologic Reservoirs, 2017, 29(2): 87-98.
[15] Yan Jianping,Yan Yu,Li Zunzhi,Geng Bin,Liang Qiang. Physical property evolution of glutenite reservoir and its influencing factors: A case study from northern steep slope zone in Dongying Sag [J]. Lithologic Reservoirs, 2016, 28(2): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Lithologic Reservoirs, 2022, 34(2): 0 .
[2] LI Zaiguang,LI Lin. Automatic mapping based on well data[J]. Lithologic Reservoirs, 2007, 19(2): 84 -89 .
[3] CHENG Yuhong,GUO Yanru,ZHENG Ximing,FANG Naizhen,MA Yuhu. The interpretation method and application effect determined by multiple seismic and logging factors[J]. Lithologic Reservoirs, 2007, 19(2): 97 -101 .
[4] LIU Juntian,JIN Zhenjia,LI Zaiguang,TAN Xinping,GUO Lin,WANG Bo,LIU Yuxiang. Controlling factors for lithologic hydrocarbon reservoirs and petroleum prospecting target in Xiaocaohu area , Taibei Sag[J]. Lithologic Reservoirs, 2007, 19(3): 44 -47 .
[5] SHANG Changliang, FU Shouxian. Application of 3D seismic survey in loess tableland[J]. Lithologic Reservoirs, 2007, 19(3): 106 -110 .
[6] WANG Changyong, ZHENG Rongcai, WANG Jianguo, CAO Shaofang, Xiao Mingguo. Sedimentary characteristics and evolution of Badaowan Formation of Lower Jurassic in northwest margin of Junggar Basin[J]. Lithologic Reservoirs, 2008, 20(2): 37 -42 .
[7] WANG Ke1 LIU Xianyang, ZHAO Weiwei, SONG Jianghai, SHI Zhenfeng, XIANG Hui. Char acter istics and geological significance of seismites of Paleogene in Yangxin Subsag of J iyang Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 54 -59 .
[8] SUN Hongbin, ZHANG Fenglian. Structural-sedimentary evolution char acter istics of Paleogene in Liaohe Depr ession[J]. Lithologic Reservoirs, 2008, 20(2): 60 -65 .
[9] LI Chuanliang. Can uplift r esult in abnormal high pr essur e in formation?[J]. Lithologic Reservoirs, 2008, 20(2): 124 -126 .
[10] WEI Qinlian,ZHENG Rongcai,XIAO Ling,MA Guofu,DOU Shijie,TIAN Baozhong. Study on horizontal heterogeneity in Serie Inferiere of Triassic in 438b block , Algeria[J]. Lithologic Reservoirs, 2009, 21(2): 24 -28 .
TRENDMD: