Lithologic Reservoirs ›› 2022, Vol. 34 ›› Issue (1): 106-117.doi: 10.12108/yxyqc.20220111

• EXPLORATION TECHNOLOGY • Previous Articles     Next Articles

Relationship between pore structure and oil production capacity of low permeability sandstone: A case study of block F154 in south slope of Dongying Sag

HE Xian1,2, YAN Jianping1,2,3, WANG Min4, WANG Jun4, GENG Bin4, LI Zhipeng4, ZHONG Guanghai5, ZHANG Ruixiang2   

  1. 1. State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China;
    3. Key Laboratory of Tectonics and Petroleum Resources, China University of Geosciences, Ministry of Education, Wuhan 430074, China;
    4. Research Institute of Exploration and Development, Sinopec Shengli Oilfield Company, Dongying 257015, Shandong, China;
    5. Research Institute of Shale Gas, PetroChina Southwest Oil & Gas Field Company, Chengdu 610500, China
  • Received:2021-02-01 Revised:2021-05-31 Online:2022-01-01 Published:2022-01-21

Abstract: The sandstone reservoirs of Shahejie Formation(Es3) in block F154 in the south slope of Dongying Sag are characterized by low permeability, complex pore structure and difficulty in productivity prediction. The pore structure characteristics and controlling factors were analyzed by using the data of core physical property test with overburden pressure,casting thin section,constant-rate mercury injection,high pressure mercury injection and X-ray diffraction. Based on the production data,the parameter of oil production intensity was obtained to represent the productivity. Relationships between pore structure parameters and oil production intensity were analyzed,and the pore structures were classified. The oil production intensity was calibrated to the logging curve through the identification of pore structure types. A multi-parameter oil production intensity prediction model was established based on sensitive logging variables,and verified with the data of actual wells. The results show that the number of large throats determines the permeability. The larger the oil production intensity,the better the pore structure. The intervals of pore structure with high oil production intensity usually have low natural gamma, high acoustic time difference,deep resistivity and deep and shallow resistivity difference. The correlation coefficient between the actual and the predicted oil production intensity is greater than 0.9,and the calculated results meet the requirements of production prediction. The research results provide a basis for the productivity prediction of low permeability sandstone reservoirs with complex pore structure.

Key words: low permeability sandstone, pore structure, productivity prediction, oil production intensity, sensi tive logging curve, Shahejie Formation, Dongying Sag

CLC Number: 

  • P631
[1] 陈永峤, 于兴河, 周新桂, 等. 东营凹陷各构造区带下第三系成岩演化与次生孔隙发育规律研究. 天然气地球科学, 2004, 15(1):68-74. CHEN Y Q, YU X H, ZHOU X G, et al. Research on diagenetic evolution succession and occurrence of secondary porosity of Lower Tertiary in different structural belt of Dongying Depression. Natural Gas Geoscience, 2004, 15(1):68-74.
[2] 耿斌, 蔡进功, 闫建平, 等. 近油源低渗透砂岩地层水特征及饱和度解释:以东营凹陷南斜坡沙河街组为例. 中国矿业大学学报, 2017, 46(6):1340-1348. GENG B, CAI J G, YAN J P, et al. Formation water characteristics of low-permeability sandstone near oil source and its significance for saturation calculation:Taking the Shahejie Formation in the south slope of Dongying Depression as an example. Journal of China University of Mining & Technology, 2017, 46(6):1340-1348.
[3] 尚明忠, 李秀华, 王文林, 等. 断陷盆地斜坡带油气勘探:以东营凹陷为例. 石油实验地质, 2004, 26(4):324-332. SHANG M Z, LI X H, WANG W L, et al. Petroleum exploration of the slope belt in the graben basin:A case study of the Dongying Sag. Petroleum Geology & Experiment, 2004, 26(4):324-332.
[4] 闫建平, 张帆, 胡钦红, 等. 东营凹陷南坡低渗透储层孔隙结构及有效性分析. 中国矿业大学学报, 2018, 47(2):345-356. YAN J P, ZHANG F, HU Q H, et al. Pore structure and effectiveness of low-permeability reservoirs on the south slope of Dongying Depression. Journal of China University of Mining & Technology, 2018, 47(2):345-356.
[5] QING F, YAN J P, WANG J, et al. Pore structure and fluid saturation of near-oil source low-permeability turbidite sandstone of the Dongying Sag in the Bohai Bay Basin, East China. Journal of Petroleum Science and Engineering, 2021, 196(1):1-19.
[6] 孔星星, 肖佃师, 蒋恕, 等. 联合高压压汞和核磁共振分类评价致密砂岩储层:以鄂尔多斯盆地临兴区块为例. 天然气工业, 2020, 40(3):38-47. KONG X X, XIAO D S, JIANG S, et al. Application of the combination of high-pressure mercury injection and nuclear magnetic resonance to the classification and evaluation of tight sandstone reservoirs:A case study of the Linxing block in the Ordos Basin. Natural Gas Industry, 2020, 40(3):38-47.
[7] 郭乐乐, 李忠百, 张稳, 等. 鄂尔多斯盆地大宁-吉县区块主力致密砂岩储层孔隙结构分析. 天然气工业, 2018, 38(增刊1):18-23. GUO L L, LI Z B, ZHANG W, et al. Pore structure analysis of main tight sandstone reservoirs in Daning-Jixian block, Ordos Basin. Natural Gas Industry, 2018, 38(Suppl 1):18-23.
[8] YAN J P, HE X, GENG B, et al. Nuclear magnetic resonance T2 spectrum multifractal characteristics and pore structure evaluation. Applied Geophysics, 2017, 14(2):205-215.
[9] 刘伟, 张德峰, 刘海河, 等. 致密砂岩储层特征及产能有效性测井评价. 测井技术, 2014, 38(6):735-739. LIU W, ZHANG D F, LIU H H, et al. Tight sandstone reservoir characteristics and log evaluation of productivity effectiveness. Well Logging Technology, 2014, 38(6):735-739.
[10] 闫建平, 梁强, 耿斌, 等. 低渗透砂岩微孔特征与孔隙结构类型的关系:以东营凹陷南斜坡沙四段为例. 岩性油气藏, 2017, 29(3):18-26. YAN J P, LIANG Q, GENG B, et al. Relationship between micropore characteristics and pore structure of low permeability sandstone:A case of the fourth member of Shahejie Formation in southern slope of Dongying Sag. Lithologic Reservoirs, 2017, 29(3):18-26.
[11] 冯进, 赵冰, 张占松, 等. 珠江口盆地惠州凹陷储层测井产能分级与识别方法. 物探与化探, 2020, 44(1):81-87. FENG J, ZHAO B, ZHANG Z S, et al. Classification and identification method of reservoir logging capacity in Huizhou Depression of Pearl River Mouth Basin. Geophysical and Geochemical Exploration, 2020, 44(1):81-87.
[12] 鞠传学, 董春梅, 张宪国, 等. 西湖凹陷花港组低渗透砂岩储层孔隙结构. 海洋地质前沿, 2016, 32(9):32-40. JU C X, DONG C M, ZHANG X G, et al. Study on the pore structure of low permeability reservoir of the Huagang Formation in Xihu depression area. Marine Geology Frontiers, 2016, 32(9):32-40.
[13] 黄娅, 孙盼科, 万金彬, 等. 福山油田流沙港组微观孔喉结构评价及其主控因素研究. 长江大学学报(自然科学版), 2016, 13(26):8-13. HUANG Y, SUN P K, WAN J B, et al. Microscopic pore structure evaluation and main controlling factors of Liushagang reservoir in Fushan oilfield. Journal of Yangtze University(Natural Science Edition), 2016, 13(26):8-13.
[14] 何羽飞, 万金彬, 王长江, 等. 基于测井资料的特低渗储层产能预测分类研究. 国外测井技术, 2014, 35(2):25-28. HE Y F, WAN J B, WANG C J, et al. Research on classification and prediction of extra low permeability reservoir capacity based on well logging data. World Well Logging Technology, 2014, 35(2):25-28.
[15] 柳娜, 周兆华, 任大忠, 等. 致密砂岩气藏可动流体分布特征及其控制因素:以苏里格气田西区盒8段与山1段为例. 岩性油气藏, 2019, 31(6):14-25. LIU N, ZHOU Z H, REN D Z, et al. Distribution characteristics and controlling factors of movable fluid in tight sandstone gas reservoir:A case study of the eighth member of Xiashihezi Formation and the first member of Shanxi Formation in western Sulige gas field. Lithologic Reservoirs, 2019, 31(6):14-25.
[16] 王慧, 訾慧, 董永强, 等. 海拉尔某地区核磁共振孔隙结构评价方法与应用. 国外测井技术, 2019, 40(2):60-65. WANG W, ZI H, DONG Y Q, et al. Evaluation method and application of NMR pore structure in a region of Hailar. World Well Logging Technology, 2019, 40(2):60-65.
[17] 黄杰, 杜玉洪, 王红梅, 等. 特低渗储层微观孔隙结构与可动流体赋存特征:以二连盆地阿尔凹陷腾一下段储层为例. 岩性油气藏, 2020, 32(5):93-101. HUANG J, DU Y H, WANG H M, et al. Characteristics of micro pore structure and movable fluid of extra-low permeability reservoir:A case study of lower Et1 reservoir in A' er Sag, Erlian Basin. Lithologic Reservoirs, 2020, 32(5):93-101.
[18] 朱华银, 安来志, 焦春艳. 恒速与恒压压汞差异及其在储层评价中的应用. 天然气地球科学, 2015, 26(7):1316-1322. ZHU H Y, AN L Z, JIAO C Y, et al. The difference between constant-rate mercury injection and the application in reservoir assessment. Natural Gas Geoscience, 2015, 26(7):1316-1322.
[19] 李军辉, 吴海波, 李跃, 等. 海拉尔盆地致密储层微观孔隙结构特征分析. 中国矿业大学学报, 2020, 49(4):721-729. LI J H, WU H B, L Y, et al. Microscopic pore structure characteristics of tight reservoir in Hailar Basin. Journal of China University of Mining & Technology, 2020, 49(4):721-729.
[20] 吴亚军, 陈昱林, 张岩, 等. 川西气田储层孔隙结构特征及其对产能的影响. 天然气工业, 2019, 39(增刊1):156-161. WU Y J, CHEN Y L, ZHANG Y, et al. Characteristics of reservoir pore structure and its effect on productivity in western Sichuan gas field. Natural Gas Industry, 2019, 39(Suppl 1):156161.
[21] 闫建平, 温丹妮, 李尊芝, 等. 低渗透砂岩孔隙结构对岩电参数的影响及应用. 天然气地球科学, 2015, 26(12):2227-2233. YAN J P, WEN D N, LI Z Z, et al. The influence of low permeable sandstone pore structure on rock electrical parameters and its applications. Natural Gas Geoscience, 2015, 26(12):22272233.
[22] 陈超峰, 孙刚, 毛新军, 等. 高探1井储层评价与产能分析. 油气井测试, 2020, 29(5):61-67. CHEN C F, SUN G, MAO X J, et al. Reservoir evaluation and productivity analysis of well Gaotan 1. Well Testing, 2020, 29(5):61-67.
[23] 袁建强. 保护油层钻井液技术在宝浪油田的应用. 钻井液与完井液, 2004, 21(5):33-35. YUAN J Q. Drilling fluid technology for formation protection in Baolang Oilfield. Drilling Fluid and Completion Fluid, 2004, 21(5):33-35.
[24] 姬靖皓, 席家辉, 曾凤凰, 等. 致密油藏分段多簇压裂水平井非稳态产能模型. 岩性油气藏, 2019, 31(4):157-164. JI J H, XI J H, ZENG F H, et al. Unsteady productivity model of segmented multi -cluster fractured horizontal wells in tight oil reservoir. Lithologic Reservoirs, 2019, 31(4):157-164.
[25] 杨洋, 石万忠, 张晓明, 等. 页岩岩相的测井曲线识别方法:以焦石坝地区五峰组-龙马溪组为例. 岩性油气藏, 2021, 33(2):135-146. YANG Y, SHI W Z, ZHANG X M, et al. Identification method of shale lithofacies by logging curve:A case study from WufengLongmaxi Formation in Jiaoshiba area, SW China. Lithologic Reservoirs, 2021, 33(2):135-146.
[26] 闫建平, 张帆, 王敏, 等. 基于核磁共振实验的低渗透砂岩岩电参数分类及应用:以东营凹陷南坡沙四段为例. 地球物理学报, 2019, 62(7):2748-2758. YAN J P, ZHANG F, WANG M, et al. Classification of rockelectro parameters of low-permeability sandstone based on nuclear magnetic resonance log and its application:An example of Es4 in south slope of the Dongying depression. Chinese Journal of Geophysics, 2019, 62(7):2748-2758.
[27] 谭成仟, 吴少波, 宋子齐. 利用测井资料预测辽河小洼油田东营组油气产能. 新疆石油地质, 2001, 22(2):147-149. TAN C Q, WU S B, SONG Z Q. Productivity prediction of Dongying formation reservoir with log data in Liaohe Xiaowa Oilfield. Xinjiang Petroleum Geology, 2001, 22(2):147-149.
[1] KONG Lingfeng, XU Jiafang, LIU Ding. Pore structure characteristics and dehydration evolution of lignite reservoirs of Jurassic Xishanyao Formation in Santanghu Basin [J]. Lithologic Reservoirs, 2024, 36(5): 15-24.
[2] CHENG Yan, WANG Bo, ZHANG Tongyao, QI Yumin, YANG Jilei, HAO Peng, LI Kuo, WANG Xiaodong. Oil and gas migration characteristics of lithologic reservoirs of Neogene Minghuazhen Formation in Bozhong A-2 area,Bozhong Sag [J]. Lithologic Reservoirs, 2024, 36(5): 46-55.
[3] ZHANG Lei, LI Sha, LUO Bobo, LYU Boqiang, XIE Min, CHEN Xinping, CHEN Dongxia, DENG Caiyun. Accumulation mechanism of overpressured lithologic reservoirs of the third member of Paleogene Shahejie Formation in northern Dongpu Sag [J]. Lithologic Reservoirs, 2024, 36(4): 57-70.
[4] ZHU Biao, ZOU Niuniu, ZHANG Daquan, DU Wei, CHEN Yi. Characteristics of shale pore structure and its oil and gas geological significance of Lower Cambrian Niutitang Formation in Fenggang area,northern Guizhou [J]. Lithologic Reservoirs, 2024, 36(4): 147-158.
[5] FENG Bin, HUANG Xiaobo, HE Youbin, LI Hua, LUO Jinxiong, LI Tao, ZHOU Xiaoguang. Reconstruction of source-to-sink system of the third member of Paleogene Shahejie Formation in Miaoxibei area,Bohai Bay Basin [J]. Lithologic Reservoirs, 2024, 36(3): 84-95.
[6] DONG Rou, LI Kun, YIN Jihang, XUE Yuheng, JIANG Tao, XU Guosheng. Spatial-temporal differential evolution model and reservoir control effect of Cenozoic extensional and strike-slip superimposed faults in Bodong Sag [J]. Lithologic Reservoirs, 2024, 36(3): 106-116.
[7] ZHU Kangle, GAO Gang, YANG Guangda, ZHANG Dongwei, ZHANG Lili, ZHU Yixiu, LI Jing. Characteristics of deep source rocks and hydrocarbon accumulation model of Paleogene Shahejie Form ationin Qingshui subsag,Liaohe Depression [J]. Lithologic Reservoirs, 2024, 36(3): 146-157.
[8] LIU Renjing, LU Wenming. Mechanism and field practice of enhanced oil recovery by injection-production coupling in fault block reservoirs [J]. Lithologic Reservoirs, 2024, 36(3): 180-188.
[9] LI Qihui, REN Dazhong, NING Bo, SUN Zhen, LI Tian, WAN Cixuan, YANG Fu, ZHANG Shiming. Micro-pore structure characteristics of coal seams of Jurassic Yan’an Formation in Shenmu area,Ordos Basin [J]. Lithologic Reservoirs, 2024, 36(2): 76-88.
[10] YANG Bowei, SHI Wanzhong, ZHANG Xiaoming, XU Xiaofeng, LIU Yuzuo, BAI Luheng, YANG Yang, CHEN Xianglin. Pore structure characteristics and gas-bearing properties of shale gas reservoirs of Lower Carboniferous Dawuba Formation in southern Guizhou [J]. Lithologic Reservoirs, 2024, 36(1): 45-58.
[11] HU Wangshui, GAO Feiyue, LI Ming, GUO Zhijie, WANG Shichao, LI Xiangming, LI Shengming, JIE Qiong. Fine characterization of reservoir units of Paleogene Shahejie Formation in Langgu Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(5): 92-99.
[12] ZENG Xu, BIAN Congsheng, SHEN Rui, ZHOU Kejia, LIU Wei, ZHOU Suyan, WANG Xiaoluan. Nonlinear seepage characteristics of shale oil reservoirs of the third member of Paleogene Shahejie Formation in Qikou Sag,Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(3): 40-50.
[13] YAO Xiutian, WANG Chao, YAN Sen, WANG Mingpeng, LI Wan. Reservoir sensitivity of Neogene Guantao Formation in Zhanhua Sag, Bohai Bay Basin [J]. Lithologic Reservoirs, 2023, 35(2): 159-168.
[14] ZHENG Bin, DONG Ao, ZHANG Yuanzhi, ZHANG Yi, SU Shan, ZHANG Shichao, FAN Jinjin, LUO Yinshan. Fluid pressure field building process and its petroleum geological significance of Paleogene Shahejie Formatiom in Bonan sag, Jiyang Depression [J]. Lithologic Reservoirs, 2023, 35(2): 59-67.
[15] XIAO Ling, CHEN Xi, LEI Ning, YI Tao, GUO Wenjie. Characteristics and main controlling factors of shale oil reservoirs of Triassic Chang 7 member in Heshui area, Ordos Basin [J]. Lithologic Reservoirs, 2023, 35(2): 80-93.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Zhanlong,ZHANG Zhenggang,CHEN Qilin,GUO Jingyi,SHA Xuemei,LIU Wensu. Using multi-parameters analysis of seismic information to evaluate lithologic traps in continental basins[J]. Lithologic Reservoirs, 2007, 19(4): 57 -63 .
[2] FANG Chaohe, WANG Yifeng, ZHENG Dewen, GE Zhixin. Maceral and petrology of Lower Tertiary source rock in Qintong Sag, Subei Basin[J]. Lithologic Reservoirs, 2007, 19(4): 87 -90 .
[3] LIN Chengyan, TAN Lijuan, YU Cuiling. Research on the heterogeneous distribution of petroleum(Ⅰ)[J]. Lithologic Reservoirs, 2007, 19(2): 16 -21 .
[4] WANG Tianqi, WANG Jiangong, LIANG Sujuan, SHA Xuemei. Fine oil exploration of Putaohua Formation in Xujiaweizi area, Songliao Basin[J]. Lithologic Reservoirs, 2007, 19(2): 22 -27 .
[5] WANG Xiwen,SHI Lanting,YONG Xueshan,YNAG Wuyang. Study on seismic impedance inversion[J]. Lithologic Reservoirs, 2007, 19(3): 80 -88 .
[6] HE Zongbin,NI Jing,WU Dong,LI Yong,LIU Liqiong,TAI Huaizhong. Hydrocarbon saturation determined by dual-TE logging[J]. Lithologic Reservoirs, 2007, 19(3): 89 -92 .
[7] YUAN Shengxue,WANG Jiang. Identification of the shallow gas reservoir in Shanle area,Tuha Basin[J]. Lithologic Reservoirs, 2007, 19(3): 111 -113 .
[8] CHEN Fei,WEI Dengfeng,YU Xiaolei,WU Shaobo. Sedimentary facies of Chang 2 oil-bearing member of Yanchang Formation in Yanchi-Dingbian area, Ordos Basin[J]. Lithologic Reservoirs, 2010, 22(1): 43 -47 .
[9] XU Yunxia,WANG Shanshan,YANG Shuai. Using Walsh transform to improve signal-to-noise ratio of seismic data[J]. Lithologic Reservoirs, 2009, 21(3): 98 -100 .
[10] LI Jianming,SHI Lingling,WANG Liqun,WU Guangda. Characteristics of basement reservoir in Kunbei fault terrace belt in southwestern Qaidam Basin[J]. Lithologic Reservoirs, 2011, 23(2): 20 -23 .
TRENDMD: